
Neural Networks Can Automatically
Adapt to Low-Dimensional Structure in

Inverse Problems
Suzanna Parkinson, Ph.D. Candidate

University of Chicago
Committee on Computational and Applied Mathematics

Brigham Young University Applied Math Seminar
September 4, 2025

https://arxiv.org/abs/2502.15522

Why do neural networks
work so well?

Why do neural networks
work so well?

Why do neural networks
work so well for solving

inverse problems?

What is an inverse problem?

Video from Samuli Siltanen https://www.youtube.com/watch?v=q7Rt_OY_7tU
CT Scan from Andrew Ciscel

https://www.youtube.com/watch?v=q7Rt_OY_7tU

Computed Tomography (CT) ScanComputed Tomography (CT) Scan

What is an inverse problem?

Video from Samuli Siltanen https://www.youtube.com/watch?v=q7Rt_OY_7tU
CT Scan from Andrew Ciscel

https://www.youtube.com/watch?v=q7Rt_OY_7tU
https://www.youtube.com/watch?v=q7Rt_OY_7tU

What is an inverse problem?

⁇
Video from Samuli Siltanen https://www.youtube.com/watch?v=q7Rt_OY_7tU

CT Scan from Andrew Ciscel

Measurements
Signal

https://www.youtube.com/watch?v=q7Rt_OY_7tU

ynew = A(xnew) + ε
Measurement Noise

ε ∈ ℝm

What is an inverse problem?

yi = A(xi) for i = 1,…, n

Measurement
Operator

A : ℝd → ℝm

 examples of

this process

n

Signal

x ∈ ℝd

m ≪ d

Measurements

y ∈ ℝm

Given a new observation
our goal is to estimate

ynew
xnew

ynew = A(xnew) + ε

What is an inverse problem?
yi = A(xi) for i = 1,…, n

Find a function f : ynew ↦ xnew

Signals

x ∈ ℝd

Measurements

y ∈ ℝm

Measurement
Operator

A : ℝd → ℝm

Inverse
mapping

??
f : ℝm → ℝd

Given a new observation
our goal is to estimate

ynew
xnew

⟺

How did you traditionally solve inverse problems?

• Explicitly assume something about the structure of the signal

• Recover the signal as the solution to an optimization problem, regularized according
to structural assumptions:

xnew = f(ynew) = arg min
x

∥ynew − A(x)∥2
2 + λ∥x∥2

2

Signals

x ∈ ℝd Measurements

y ∈ ℝm

Measurement
Operator

A : ℝd → ℝm

Inverse
Mapping

??
f : ℝm → ℝd

What are machine learning approaches to solving an inverse problem?

• If we have access to training data pairs , can we learn an even better mapping
?

• Pick in some model class that best fits the training data, perhaps plus some regularization

n yi = A(xi)
f : y ↦ x

f ℱ

̂f = arg min
f∈ℱ

L(f) =
1
n

n

∑
i=1

∥f(yi) − xi∥2 + R(f)

Signals

x ∈ ℝd Measurements

y ∈ ℝm

Measurement
Operator

A : ℝd → ℝm

Inverse
Mapping

??
f : ℝm → ℝd

How do you solve inverse problems with a neural network?

Find

via Gradient Descent:

̂θ ∈ arg min
θ

L(θ) =
1
2

n

∑
i=1

∥fθ(yi) − xi∥2 + λ
L

∑
ℓ=1

∥Wℓ∥2
F

θt+1 = θt − η∇L(θt)

θ = (W1, W2, …, WL)
⋯W2W1 WL fθ(y) = WLσ (⋯σ (W2σ (W1y)))

Signals

x ∈ ℝd

Measurements

y ∈ ℝm

How do you solve inverse problems with a neural network?

• Machine learning approaches have been surprisingly successful for solving inverse problems
Ongie et al. (2018), Barbastathis et al. (2019), Knoll et al (2020)

• The success is especially surprising in light of the very high dimensionality of the data

• Hypothesis: The training signals have latent low-dimensional structure that is preserved by the
measurement operator, and neural networks are adapting to that structure, allowing for
improved robustness to noise at test time. How does this happen?

Why do neural networks
work so well for solving

inverse problems?

Simplified Setting

• Let us assume that the training signals have a simple form of latent low-dimensional structure
that is preserved by the measurement operator

• Does a simple neural network adapt to that structure? Does this improve robustness?

 samples of this processn ≥ s

Low-dimensional structure that is preserved by the measurement operator

 and xi = Rzi ∈ ℝd yi = Axi = ARzi ∈ ℝm

ynew = Axnew + ε = ARznew + ε Measurement Noise

ε ∈ ℝm

s ≪ m ≪ d

Linear measurement operator

preserves the subspace structure

A ∈ ℝm×d

(1 − δ)∥x∥ ≤ ∥Ax∥ ≤ (1 + δ)∥x∥
∀x ∈ range(R)

Signals live in an

 -dimensional subspace

R ∈ ℝd×s

s
x ∈ range(R) ⊆ ℝd

Measurements live in an

 -dimensional subspace

s
y ∈ range(AR) ⊆ ℝm

Warning: What follows is not advice on how to solve this inverse problem!

• If you know a priori that your inverse problem has this subspace structure, then there is a known way recover
 with high accuracy

• Oracle solution using the Moore-Penrose Pseudoinverse:

• Precisely because the oracle solution exists, we can analyze how close the learned neural network is to
doing the “right” thing

• An inverse mapping that takes advantage of the low-dimensional structure does much better than one
that does not

• What does this simplified setting reveal about the ability of neural networks to automatically adapt to
structure in data?

xnew

xnew ≈ R(AR)†ynew = XY†ynew

 and xi = Rzi ∈ ℝd yi = Axi = ARzi ∈ ℝm

ynew = Axnew + ε = ARznew + ε

Stack samples into matrices

 and

n
X ∈ ℝd×n Y ∈ ℝm×n

Neural Network with Linear Activations

Find

via Gradient Descent:

̂θ ∈ arg min
θ

L(θ) =
1
2

∥WL⋯W1Y − X∥2
F + λ

L

∑
ℓ=1

∥Wℓ∥2
F

θt+1 = θt − η∇L(θt)

θ = (W1, W2, …, WL)⋯W2W1 WL

fθ(y) = WL⋯W2W1y

Signals

x ∈ ℝd

Measurements

y ∈ ℝm

Find

via Gradient Descent:

̂θ ∈ arg min
θ

L(θ) =
1
2

∥WL:1Y − X∥2
F + λ

L

∑
ℓ=1

∥Wℓ∥2
F

θt+1 = θt − η∇L(θt)

θ = (W1, W2, …, WL)⋯W2W1 WL

fθ(y) = WL⋯W2W1y

Signals

x ∈ ℝd

Measurements

y ∈ ℝm

Neural Network with Linear Activations
Never explicitly imposing

low-dimensional structure!

Note: equivalent to

But gradient descent trajectory may be different!

̂θ ∈ arg min
θ

1
2

∥WL:1Y − X∥2
F + λ∥WL:1∥2/L

S2/L

Previous work on gradient descent in linear neural networks

• Without regularization () Du & Hu (2019),
Xu et al. (2023)

• Unrealistic initialization assumptions Hu et

al. (2020), Hu et al. (2022), Arora et al. (2019), Nguegnang et
al. (2024), Arora et al. (2018)

• Step-size very small Lewkowycz & Gur-Ari (2020),
Gidel et al. (2019), Ji & Telgarsky (2019), Eftekhari (2020), Bah

et al. (2019), Pesme et al. (2021), Jacot et al. (2021), Arora et
al. (2018),

• SGD can only ever decrease the rank of a
solution, but unclear if it finds a good fit
to the data Wang & Jacot (2024)

λ = 0

η

Our analysis
➡With regulariation ()

➡Initialization essentially equivalent to
using PyTorch default

➡Very mild assumptions on stepsize

➡Both adaptation to structure and
good fit to the training data

λ > 0

η

We track the evolution of two main quantities throughout gradient descent:

projection onto

Good reconstructions of training data & adaptation to structure
 robustness to noise at test-time

P⊥ = range(AR)⊥

⟹

∥WL:1ynew − xnew∥2 ≤ ∥WL:1 − XY†∥2∥ynew∥2+∥XY†ynew − xnew∥2

∥WL:1 − XY†∥2 ≤ ∥WL:1Y − X∥F∥Y†∥2 + ∥WL:1P⊥∥2

So what happens in our simplified setting?
 and

Find

via Gradient Descent:

xi = Rzi ∈ ℝd yi = Axi = ARzi ∈ ℝm

ynew = Axnew + ε = ARznew + ε

̂θ ∈ arg min
θ

L(θ) =
1
2

∥WL:1Y − X∥2
F + λ

L

∑
ℓ=1

∥Wℓ∥2
F

θt+1 = θt − η∇L(θt)

How well network
adapts to low-

dimensional structure

How well network
reconstructs the

training data

 and ∥WL:1Y − X∥F ∥WL:1P⊥∥2

Two phases:
1. Rapid improvement in reconstructions of the training samples in first iterations
2. Slow recovery of the latent low-dimensional structure

τ

0 200 400 600 800 1000
Iteration t

10°4

10°3

10°2

kW
L

:1
(t

)Y
°

X
k F

/k
X

k F

ø

Reconstruction error

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

0 2000 4000 6000 8000 10000
Iteration t

10°5

10°4

10°3

10°2

10°1

100

kW
L

:1
(t

)P
?

k o
p

OÆ-subspace error (∏ = 10°3)

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

Training with different stepsizes

where is the stepsize

prescribed by our theory

η = k ⋅ ̂η
̂η ∥WL:1Y − X∥F

0 200 400 600 800 1000
Iteration t

10°4

10°3

10°2

kW
L

:1
(t

)Y
°

X
k F

/k
X

k F

ø

Reconstruction error

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

0 2000 4000 6000 8000 10000
Iteration t

10°5

10°4

10°3

10°2

10°1

100

kW
L

:1
(t

)P
?

k o
p

OÆ-subspace error (∏ = 10°3)

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

 ∥WL:1P⊥∥2

 and

Find

via Gradient Descent:

xi = Rzi ∈ ℝd yi = Axi = ARzi ∈ ℝm

ynew = Axnew + ε = ARznew + ε

̂θ ∈ arg min
θ

L(θ) =
1
2

∥WL:1Y − X∥2
F + λ

L

∑
ℓ=1

∥Wℓ∥2
F

θt+1 = θt − η∇L(θt)

So what happens in our simplified setting?

How well network
adapts to low-

dimensional structure

How well network
reconstructs the

training data

 and

Find

via Gradient Descent:

xi = Rzi ∈ ℝd yi = Axi = ARzi ∈ ℝm

ynew = Axnew + ε = ARznew + ε

̂θ ∈ arg min
θ

L(θ) =
1
2

∥WL:1Y − X∥2
F + λ

L

∑
ℓ=1

∥Wℓ∥2
F

θt+1 = θt − η∇L(θt)

So what happens in our simplified setting?

0 200 400 600 800 1000
Iteration t

10°4

10°3

10°2

kW
L

:1
(t

)Y
°

X
k F

/k
X

k F

ø

Reconstruction error

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

0 2000 4000 6000 8000 10000
Iteration t

10°5

10°4

10°3

10°2

10°1

100

kW
L

:1
(t

)P
?

k o
p

OÆ-subspace error (∏ = 10°3)

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

 ∥WL:1P⊥∥2

0 200 400 600 800 1000
Iteration t

10°4

10°3

10°2

kW
L

:1
(t

)Y
°

X
k F

/k
X

k F

ø

Reconstruction error

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

0 2000 4000 6000 8000 10000
Iteration t

10°5

10°4

10°3

10°2

10°1

100

kW
L

:1
(t

)P
?

k o
p

OÆ-subspace error (∏ = 10°3)

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5Training with different
stepsizes

where is the stepsize

prescribed by our theory

η = k ⋅ ̂η
̂η

 ∥WL:1Y − X∥F

How well network
reconstructs the

training data

Two phases:
1. Rapid improvement in reconstructions of the training samples

after iterations

2. Slow recovery of the latent low-dimensional structure

 and =

after iterations

Good reconstructions of training data & adaptation to structure
 robustness to noise at test-time

∥WL:1Y − X∥F = O (λ
L)

τ = O (1
ηL

log (L
λ))

∥WL:1Y − X∥F = O (λ) ∥WL:1P⊥∥2 O (1
dC

w)
T = O (log(dw)

ηλ)

⟹

∥WL:1 − XY†∥2 ≤ ∥WL:1Y − X∥F∥Y†∥2+∥WL:1P⊥∥2

Distance to oracle solution is small at the end of Phase 2

How well network
adapts to low-
dimensional

structure

 and

Find

via Gradient Descent:

xi = Rzi ∈ ℝd yi = Axi = ARzi ∈ ℝm

ynew = Axnew + ε = ARznew + ε

̂θ ∈ arg min
θ

L(θ) =
1
2

∥WL:1Y − X∥2
F + λ

L

∑
ℓ=1

∥Wℓ∥2
F

θt+1 = θt − η∇L(θt)

So what happens in our simplified setting?

0 200 400 600 800 1000
Iteration t

10°4

10°3

10°2

kW
L

:1
(t

)Y
°

X
k F

/k
X

k F

ø

Reconstruction error

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

0 2000 4000 6000 8000 10000
Iteration t

10°5

10°4

10°3

10°2

10°1

100

kW
L

:1
(t

)P
?

k o
p

OÆ-subspace error (∏ = 10°3)

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

 ∥WL:1P⊥∥2

0 200 400 600 800 1000
Iteration t

10°4

10°3

10°2

kW
L

:1
(t

)Y
°

X
k F

/k
X

k F

ø

Reconstruction error

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5

0 2000 4000 6000 8000 10000
Iteration t

10°5

10°4

10°3

10°2

10°1

100

kW
L

:1
(t

)P
?

k o
p

OÆ-subspace error (∏ = 10°3)

k = 0.01

k = 0.05

k = 0.1

k = 0.5

k = 1

k = 5Training with different
stepsizes

where is the stepsize

prescribed by our theory

η = k ⋅ ̂η
̂η

 ∥WL:1Y − X∥F

How well network
reconstructs the

training data

Two phases:
1. Rapid improvement in reconstructions of the training samples

after iterations

2. Slow recovery of the latent low-dimensional structure

 and =

after iterations

Good reconstructions of training data & adaptation to structure
 robustness to noise at test-time

∥WL:1Y − X∥F = O (λ
L)

τ = O (1
ηL

log (L
λ))

∥WL:1Y − X∥F = O (λ) ∥WL:1P⊥∥2 O (1
dC

w)
T = O (log(dw)

ηλ)

⟹

∥WL:1 − XY†∥2 ≤ ∥WL:1Y − X∥F∥Y†∥2+∥WL:1P⊥∥2

Distance to oracle solution is small at the end of Phase 2

How well network
adapts to low-
dimensional

structure

Continuing to train after training data fit
stops improving

Network that does better at test time by
adapting to low-dimensional structure

→

One reason neural networks work well
for solving inverse problems is because

they can automatically adapt to
structure in data

What’s next?

• What about more complex forms of low-dimensional structure in data?

• What about more complex neural networks?

• How does depth affect the ability to adapt to low-dimensional structure?

• What about stochastic variants of gradient descent? Adam, etc.?

What else?

• Studying how nonlinear neural network architectures adapt to low-
dimensional structure

• Adding linear layers to a ReLU network yields a trained network
that mostly only varies in a few directions in the input space
Parkinson, Ongie & Willett (2025)

• Functions that can be represented by a deep ReLU network with
small norm will have low-dimensional structure Jacot (2023)

• Similar behavior can be induced with only a few ReLU layers and
many linear layers

• What can deeper networks do that shallower networks can’t?
Parkinson, Ongie, Willett, Shamir & Srebro (2024)

Input
Output

x[2]

x[1]

Linear ReLULinear

Thank you!

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship
Program under Grant No. 2140001. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Vasileios Charisopoulos
University

of Washington

Hannah Laus
Technical University

 of Munich

Rebecca Willett
University

of Chicago

Felix Krahmer
Technical University

 of Munich

https://arxiv.org/abs/2502.15522

