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Why do neural networks

work so well?

New Research Finds FastMRI Scans
Generated with Artificial Intelligence Are
as Accurate as Traditional MRI
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Why do neural networks

work so well for solving
inverse problems?

New Research Finds FastMRI Scans
Generated with Artificial Intelligence Are
as Accurate as Traditional MRI
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What is an inverse problem?

Video from Samuli Siltanen https.//www.voutube com/watch?v=q/Rt OY /tU
CT Scan from Andrew Ciscel



https://www.youtube.com/watch?v=q7Rt_OY_7tU

What is an inverse problem?

e

Computed Tomography (CT) Scan

Video from Samuli Siltanen https.//www.voutube com/watch?v=q/Rt OY /tU
CT Scan from Andrew Ciscel



https://www.youtube.com/watch?v=q7Rt_OY_7tU
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What is an inverse problem?

Measurements
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What is an inverse problem?
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What is an inverse problem?
y,=AX)fori=1,...,n
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How did you traditionally solve inverse problems?

* Explicitly assume something about the structure of the signal

* Recover the signal as the solution to an optimization problem, regularized according
to structural assumptions:

Xpew = f(Vnew) = argmin ||y, = A3 + A[Ix]13
X
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What are machine learning approaches to solving an inverse problem?

* |f we have access to n training data pairs y. = A(X;), can we learn an even better mapping
1y x?

* Pick fin some model class & that best fits the training data, perhaps plus some regularization
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How do you solve inverse problems with a neural network?
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How do you solve inverse problems with a neural network?

* Machine learning approaches have been surprisingly successful for solving inverse problems
Ongie et al (2018), Barbastathis et al (2019), Knoll et al (2020)

* The success is especially surprising in light of the very high dimensionality of the data

Why do neural networks

work so well for solving
inverse problems?

* Hypothesis: The training signals have latent low-dimensional structure that is preserved by the
measurement operator, and neural networks are adapting to that structure, allowing for
improved robustness to noise at test time. How does this happen?



Simplified Setting

* Let us assume that the training signals have a simple form of latent low-dimensional structure
that is preserved by the measurement operator

* Does asimple neural network adapt to that structure? Does this improve robustness”?



Low-dimensional structure that is preserved by the measurement operator

n > s samples of this process
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Warning: What follows is not advice on how to solve this inverse problem!

* |f you know a priori that your inverse problem has this subspace structure, then there is a known way recover

X v With high accuracy

. : : Stack n samples into matrices
* Oracle solution using the Moore-Penrose Pseudoinverse: X € RN and Y & R

/

= XY

X .. ~ R(AR)

yIl€W Ynew

* Precisely because the oracle solution exists, we can analyze how close the learned neural network is to

doing the "right” thing

* An inverse mapping that takes advantage of the low-dimensional structure does much better than one
that does not

* What does this simplified setting reveal about the ability of neural networks to automatically adapt to
structure in data?
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Neural Network with Linear Activations
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Neural Network with Linear Activations
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Previous work on gradient descent in linear neural networks

« Without regularization (A = 0) pu & Hu (2019)
Xuetal (2023)

* Unrealistic initialization assumptions #u et

al. (2020), Hu et al. (2022), Arora et al (201%9), Nguegnang et
al. (2024), Arora et al. (2018)

o Step-size n very small Lewkowyer & Gurar (2020),
Gidel etal (2019), Ji & Telgarsky (2019), Eftekhari (2020), Bah

etal (7019) Pesme et al (Z027), Jacotetal (2027) Arora et
al (2018),

* SGD can only ever decrease the rank of a
solution, but unclear if it finds a good fit
to the data Wang & Jacor (2024)

Our analysis
=\\/ith regulariation (41 > 0)

= |nitialization essentially equivalent to
using PyTorch default

=\/ery mild assumptions on stepsize i

= Both adaptation to structure and
good fit to the training data
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One reason neural networks work well
for solving inverse problems is because
they can automatically adapt to
structure in data



What's next?

* What about more complex forms of low-dimensional structure in data?
* What about more complex neural networks?
* How does depth affect the ability to adapt to low-dimensional structure?

* What about stochastic variants of gradient descent? Adam, etc.?



What else?
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* Studying how nonlinear neural network architectures adapt to low-
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* Adding linear layers to a ReLU network yields a trained network

that mostly only varies in a few directions in the input space
Farkinson, Ongie & Willett (2025)
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e Functions that can be represented by a deep RelLU network with
small norm will have low-dimensional structure Jscot (2023

* Similar behavior can be induced with only a few RelLU layers and
many linear layers

* What can deeper networks do that shallower networks can't?
Farkinson, Ongie, Willett, Shamir & Srebro (2024)



Thank you!

https://arxiv.org/abs/2502.15522
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