Neural Networks Can Automatically Adapt to Low-Dimensional Structure in Inverse Problems

Suzanna Parkinson, Ph.D. Candidate
University of Chicago
Committee on Computational and Applied Mathematics

Brigham Young University Applied Math Seminar September 4, 2025

ROBOTICS

Computer Eyesight Gets a Lot More Accurate

BY JOHN MARKOFF AUGUST 18, 2014 8:01 PM

Historic Achievement: Microsoft researchers reach human parity in conversational speech recognition

October 18, 2016 | Allison Linn

First supernova detected, confirmed, classified and shared by AI

New artificial intelligence tool removes humans from entire search, discovery process

October 13, 2023 | By Amanda Morris

Google just made artificial-intelligence history

A year after ChatGPT's release, the Al revolution is just beginning

8 min read · Updated 10:32 AM EST, Thu November 30, 2023

News & Views Open access Published: 25 November 2024

Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine

Ben Li & Stephen Gilbert ☑

npj Digital Medicine 7, Article number: 336 (2024) Cite this article

RESEARCH, PRESS RELEASES, ARTIFICIAL INTELLIGENCE | AUGUST 18, 2020 **New Research Finds FastMRI Scans Generated with Artificial Intelligence Are** as Accurate as Traditional MRI

ROBOTICS

Computer Eyesight Gets a Lot More Accurate

BY JOHN MARKOFF AUGUST 18, 2014 8:01 PM

Historic Achievement: Microsoft researchers reach human parity in conversational speech recognition

New artificial intel

Why do neural networks work so well?

revolution

Google just made artificial-intelligence history

News & Views Open access Published: 25 November 2024

Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine

Ben Li & Stephen Gilbert ☑

npj Digital Medicine 7, Article number: 336 (2024) Cite this article

New Research Finds FastMRI Scans Generated with Artificial Intelligence Are as Accurate as Traditional MRI

Google just made artificial-intelligence history

evolution

v Drake Baer

Computer Eyesight Gets a Lot More Accurate

BY JOHN MARKOFF AUGUST 18, 2014 8:01 PM

Historic Achievement: Microsoft researchers reach human parity in conversational speech recognition

New artificial intel

Why do neural networks work so well?

Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine

Ben Li & Stephen Gilbert

npj Digital Medicine 7, Article number: 336 (2024) Cite this article

New Research Finds FastMRI Scans Generated with Artificial Intelligence Are as Accurate as Traditional MRI

Google just made artificial-intelligence history

evolution

3v **Drake Baer**

Computer Eyesight Gets a Lot More Accurate

BY JOHN MARKOFF AUGUST 18, 2014 8:01 PM

Historic Achievement: Microsoft researchers reach human parity in conversational speech recognition

New artificial intel

Why do neural networks work so well for solving inverse problems?

News & Views | Open access | Published: 25 November 2024

Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine

Ben Li & Stephen Gilbert

npj Digital Medicine 7, Article number: 336 (2024) Cite this article

New Research Finds FastMRI Scans Generated with Artificial Intelligence Are as Accurate as Traditional MRI

Computed Tomography (CT) Scan

??

$$\mathbf{y}_i = \mathbf{A}(\mathbf{x}_i) \text{ for } i = 1,...,n$$

$$\mathbf{y}_{\text{new}} = \mathbf{A}(\mathbf{x}_{\text{new}}) + \varepsilon$$

Given a new observation \mathbf{y}_{new} our **goal** is to estimate \mathbf{x}_{new}

Find a function $f: \mathbf{y}_{\text{new}} \mapsto \mathbf{x}_{\text{new}}$

How did you traditionally solve inverse problems?

- Explicitly assume something about the structure of the signal
- Recover the signal as the solution to an optimization problem, regularized according to structural assumptions:

$$\mathbf{x}_{\text{new}} = f(\mathbf{y}_{\text{new}}) = \arg\min_{\mathbf{x}} \|\mathbf{y}_{\text{new}} - \mathbf{A}(\mathbf{x})\|_{2}^{2} + \lambda \|\mathbf{x}\|_{2}^{2}$$

What are machine learning approaches to solving an inverse problem?

- If we have access to n training data pairs $\mathbf{y}_i = \mathbf{A}(\mathbf{x}_i)$, can we learn an even better mapping $f: \mathbf{y} \mapsto \mathbf{x}$?
- ullet Pick f in some model class ${\mathscr F}$ that best fits the training data, perhaps plus some regularization

$$\hat{f} = \arg\min_{f \in \mathcal{F}} L(f) = \frac{1}{n} \sum_{i=1}^{n} ||f(\mathbf{y}_i) - \mathbf{x}_i||^2 + R(f)$$

How do you solve inverse problems with a neural network?

$$\theta = \left(\mathbf{W}_{1}, \mathbf{W}_{2}, \dots, \mathbf{W}_{L}\right)$$

$$f_{\theta}(\mathbf{y}) = \mathbf{W}_{L}\sigma\left(\cdots\sigma\left(\mathbf{W}_{2}\sigma\left(\mathbf{W}_{1}\mathbf{y}\right)\right)\right)$$

Find
$$\hat{\theta} \in \arg\min_{\theta} L(\theta) = \frac{1}{2} \sum_{i=1}^{n} ||f_{\theta}(\mathbf{y}_i) - \mathbf{x}_i||^2 + \lambda \sum_{\ell=1}^{L} ||\mathbf{W}_{\ell}||_F^2$$

via Gradient Descent: $\theta^{t+1} = \theta^t - n \nabla L(\theta^t)$

$$\theta^{t+1} = \theta^t - \eta \nabla L(\theta^t)$$

How do you solve inverse problems with a neural network?

- Machine learning approaches have been surprisingly successful for solving inverse problems Ongie et al. (2018), Barbastathis et al. (2019), Knoll et al (2020)
- The success is especially surprising in light of the very high dimensionality of the data

Why do neural networks work so well for solving inverse problems?

• Hypothesis: The training signals have **latent low-dimensional structure** that is preserved by the measurement operator, and neural networks are **adapting to that structure**, allowing for improved robustness to noise at test time. **How does this happen?**

Simplified Setting

- Let us assume that the training signals have a simple form of **latent low-dimensional structure** that is preserved by the measurement operator
- Does a simple neural network adapt to that structure? Does this improve robustness?

Low-dimensional structure that is preserved by the measurement operator

 $\mathbf{x} \in \text{range}(\mathbf{R}) \subseteq \mathbb{R}^d$

 $s \ll m \ll d$

$$\mathbf{y}_{\text{new}} = \mathbf{A}\mathbf{x}_{\text{new}} + \varepsilon = \mathbf{A}\mathbf{R}\mathbf{z}_{\text{new}} + \varepsilon$$
 \leftarrow Measurement Noise $\varepsilon \in \mathbb{R}^m$

Warning: What follows is not advice on how to solve this inverse problem!

- If you know a priori that your inverse problem has this subspace structure, then there is a known way recover \mathbf{x}_{new} with high accuracy
- Oracle solution using the Moore-Penrose Pseudoinverse:

rose Pseudoinverse: Stack
$$n$$
 samples into matrices $\mathbf{X} \in \mathbb{R}^{d \times n}$ and $\mathbf{Y} \in \mathbb{R}^{m \times n}$ $\mathbf{X}_{new} \approx \mathbf{R}(\mathbf{A}\mathbf{R})^{\dagger}\mathbf{y}_{new} = \mathbf{X}\mathbf{Y}^{\dagger}\mathbf{y}_{new}$

- Precisely because the oracle solution exists, we can analyze how close the learned neural network is to doing the "right" thing
- An inverse mapping that takes advantage of the **low-dimensional structure** does much better than one that does not
- What does this simplified setting reveal about the ability of neural networks to **automatically adapt to structure** in data?

$$\mathbf{x}_i = \mathbf{R}\mathbf{z}_i \in \mathbb{R}^d \text{ and } \mathbf{y}_i = \mathbf{A}\mathbf{x}_i = \mathbf{A}\mathbf{R}\mathbf{z}_i \in \mathbb{R}^m$$

$$\mathbf{y}_{\text{new}} = \mathbf{A}\mathbf{x}_{\text{new}} + \varepsilon = \mathbf{A}\mathbf{R}\mathbf{z}_{\text{new}} + \varepsilon$$

Neural Network with Linear Activations

$$\theta = (\mathbf{W}_1, \mathbf{W}_2, ..., \mathbf{W}_L)$$

$$f_{\theta}(\mathbf{y}) = \mathbf{W}_L \cdots \mathbf{W}_2 \mathbf{W}_1 \mathbf{y}$$

Find
$$\hat{\theta} \in \arg\min_{\theta} \ L(\theta) = \frac{1}{2} \|\mathbf{W}_L \cdots \mathbf{W}_1 \mathbf{Y} - \mathbf{X}\|_F^2 + \lambda \sum_{\ell=1}^L \|\mathbf{W}_\ell\|_F^2$$
 via **Gradient Descent:** $\theta^{t+1} = \theta^t - \eta \ \nabla L(\theta^t)$

Neural Network with Linear Activations

Never explicitly imposing low-dimensional structure!

$$\theta = (\mathbf{W}_1, \mathbf{W}_2, ..., \mathbf{W}_L)$$

$$f_{\theta}(\mathbf{y}) = \mathbf{W}_L \cdots \mathbf{W}_2 \mathbf{W}_1 \mathbf{y}$$

Note: equivalent to $\hat{\theta} \in \arg\min_{\theta} \frac{1}{2} \|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_F^2 + \lambda \|\mathbf{W}_{L:1}\|_{S^{2/L}}^{2/L}$ But gradient descent trajectory may be different!

Find
$$\hat{\theta} \in \arg\min_{\theta} L(\theta) = \frac{1}{2} \|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_F^2 + \lambda \sum_{\ell=1}^{L} \|\mathbf{W}_{\ell}\|_F^2$$

via Gradient Descent:

$$\theta^{t+1} = \theta^t - \eta \nabla L(\theta^t)$$

Previous work on gradient descent in linear neural networks

- Without regularization ($\lambda = 0$) Du & Hu (2019), Xu et al. (2023)
- Unrealistic initialization assumptions Hu et al. (2020), Hu et al. (2022), Arora et al. (2019), Nguegnang et al. (2024), Arora et al. (2018)
- Step-size η very small Lewkowycz & Gur-Ari (2020), Gidel et al. (2019), Ji & Telgarsky (2019), Eftekhari (2020), Bah et al. (2019), Pesme et al. (2021), Jacot et al. (2021), Arora et al. (2018),
- SGD can only ever decrease the rank of a solution, but unclear if it finds a good fit to the data Wang & Jacot (2024)

Our analysis

→With regulariation ($\lambda > 0$)

→Initialization essentially equivalent to using PyTorch default

- \rightarrow Very **mild** assumptions on stepsize η
- →Both adaptation to structure and good fit to the training data

$$\begin{aligned} \mathbf{x}_i &= \mathbf{R} \mathbf{z}_i \in \mathbb{R}^d \text{ and } \mathbf{y}_i = \mathbf{A} \mathbf{x}_i = \mathbf{A} \mathbf{R} \mathbf{z}_i \in \mathbb{R}^m \\ \mathbf{y}_{\text{new}} &= \mathbf{A} \mathbf{x}_{\text{new}} + \varepsilon = \mathbf{A} \mathbf{R} \mathbf{z}_{\text{new}} + \varepsilon \end{aligned}$$
 Find $\hat{\theta} \in \arg\min_{\theta} \ L(\theta) = \frac{1}{2} \|\mathbf{W}_{L:1} \mathbf{Y} - \mathbf{X}\|_F^2 + \lambda \sum_{\ell=1}^L \|\mathbf{W}_{\ell}\|_F^2$ via **Gradient Descent:** $\theta^{t+1} = \theta^t - \eta \, \nabla L(\theta^t)$

We track the evolution of two main quantities throughout gradient descent:

 $\mathbf{P}_{\perp} = \text{projection onto range}(\mathbf{A}\mathbf{R})^{\perp}$

Good reconstructions of training data & adaptation to structure ⇒ robustness to noise at test-time

$$\begin{aligned} \|\mathbf{W}_{L:1}\mathbf{y}_{\text{new}} - \mathbf{x}_{\text{new}}\|_{2} &\leq \|\mathbf{W}_{L:1} - \mathbf{X}\mathbf{Y}^{\dagger}\|_{2} \|\mathbf{y}_{\text{new}}\|_{2} + \|\mathbf{X}\mathbf{Y}^{\dagger}\mathbf{y}_{\text{new}} - \mathbf{x}_{\text{new}}\|_{2} \\ \|\mathbf{W}_{L:1} - \mathbf{X}\mathbf{Y}^{\dagger}\|_{2} &\leq \|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_{F} \|\mathbf{Y}^{\dagger}\|_{2} + \|\mathbf{W}_{L:1}\mathbf{P}_{\perp}\|_{2} \end{aligned}$$

Two phases:

- 1. Rapid improvement in reconstructions of the training samples in first au iterations
- 2. Slow recovery of the latent low-dimensional structure

Two phases:

1. Rapid improvement in reconstructions of the training samples

$$\begin{aligned} \|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_F &= O\left(\frac{\lambda}{L}\right) \\ \text{after } \tau &= O\left(\frac{1}{\eta L}\log\left(\frac{L}{\lambda}\right)\right) \text{iterations} \end{aligned}$$

2. **Slow** recovery of the latent low-dimensional **structure**

$$\begin{aligned} \|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_F &= O\left(\lambda\right) \text{ and } \|\mathbf{W}_{L:1}\mathbf{P}_\bot\|_2 = O\left(\frac{1}{d_w^C}\right) \\ \text{after } T &= O\left(\frac{\log(d_w)}{\eta\lambda}\right) \text{ iterations} \end{aligned}$$

Good reconstructions of training data & adaptation to structure ⇒ robustness to noise at test-time

$$\|\mathbf{W}_{L:1} - \mathbf{X}\mathbf{Y}^{\dagger}\|_{2} \leq \|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_{F}\|\mathbf{Y}^{\dagger}\|_{2} + \|\mathbf{W}_{L:1}\mathbf{P}_{\perp}\|_{2}$$
Distance to **oracle** solution is small at the end of Phase 2

 $\mathbf{x}_i = \mathbf{R}\mathbf{z}_i \in \mathbb{R}^d \text{ and } \mathbf{y}_i = \mathbf{A}\mathbf{x}_i = \mathbf{A}\mathbf{R}\mathbf{z}_i \in \mathbb{R}^m$ $\mathbf{y}_{\text{new}} = \mathbf{A}\mathbf{x}_{\text{new}} + \varepsilon = \mathbf{A}\mathbf{R}\mathbf{z}_{\text{new}} + \varepsilon$ Find $\hat{\theta} \in \arg\min_{\theta} \ L(\theta) = \frac{1}{2} \|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_F^2 + \lambda \sum_{\ell=1}^L \|\mathbf{W}_{\ell}\|_F^2$ via **Gradient Descent:** $\theta^{t+1} = \theta^t - \eta \, \nabla L(\theta^t)$

$\mathbf{x}_i = \mathbf{R}\mathbf{z}_i \in \mathbb{R}^d$ and $\mathbf{y}_i = \mathbf{A}\mathbf{x}_i = \mathbf{A}\mathbf{R}\mathbf{z}_i \in \mathbb{R}^m$ $\mathbf{y}_{\text{new}} = \mathbf{A}\mathbf{x}_{\text{new}} + \varepsilon = \mathbf{A}\mathbf{R}\mathbf{z}_{\text{new}} + \varepsilon$ Find $\hat{\theta} \in \arg\min_{\theta} \ L(\theta) = \frac{1}{2} \|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_F^2 + \lambda \sum_{\ell=1}^L \|\mathbf{W}_{\ell}\|_F^2$ via **Gradient Descent:** $\theta^{t+1} = \theta^t - \eta \ \nabla L(\theta^t)$

 $\|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_F$

- k = 5

Training with different

stepsizes

 $\eta = k \cdot \hat{\eta}$

where $\hat{\eta}$ is the stepsize

prescribed by our theory

How well network

reconstructs the

training data

Two phases:

Rapid improvement in reconstructions of the training samples

$$\|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_F = O\left(\frac{\lambda}{L}\right)$$

Continuing to train after training data fit stops improving →

2. **Slow** recovery of the la

Network that does better at test time by adapting to low-dimensional structure

Good reconstructions of training data & adaptation to structure > robustness to noise at test-time

$$\|\mathbf{W}_{L:1} - \mathbf{X}\mathbf{Y}^{\dagger}\|_{2} \leq \|\mathbf{W}_{L:1}\mathbf{Y} - \mathbf{X}\|_{F}\|\mathbf{Y}^{\dagger}\|_{2} + \|\mathbf{W}_{L:1}\mathbf{P}_{\perp}\|_{2}$$

Distance to oracle solution is small at the end of Phase 2

One reason **neural networks** work well for solving **inverse problems** is because they can **automatically adapt** to structure in data

What's next?

- What about more complex forms of low-dimensional structure in data?
- What about more complex neural networks?
- How does depth affect the ability to adapt to low-dimensional structure?
- What about stochastic variants of gradient descent? Adam, etc.?

What else?

- Studying how nonlinear neural network architectures adapt to lowdimensional structure
 - Adding linear layers to a ReLU network yields a trained network that mostly **only varies in a few directions** in the input space *Parkinson, Ongie & Willett (2025)*
 - Functions that can be represented by a deep ReLU network with small **norm** will have low-dimensional structure *Jacot (2023)*
 - Similar behavior can be induced with only a few ReLU layers and many linear layers
- What can deeper networks do that shallower networks can't? Parkinson, Ongie, Willett, Shamir & Srebro (2024)

Thank you!

https://arxiv.org/abs/2502.15522

Hannah Laus Technical University of Munich

Vasileios Charisopoulos
University
of Washington

Rebecca Willett
University
of Chicago

Felix Krahmer
Technical University
of Munich