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ynew = A(xnew) + ε
Measurement Noise


ε ∈ ℝm
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yi = A(xi) for i = 1,…, n
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ynew = A(xnew) + ε

What is an inverse problem?
yi = A(xi) for i = 1,…, n

Find a function   f : ynew ↦ xnew
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How did you traditionally solve inverse problems?

• Explicitly assume something about the structure of the signal 

• Recover the signal as the solution to an optimization problem, regularized according 
to structural assumptions:

xnew = f(ynew) = arg min
x

∥ynew − A(x)∥2
2 + λ∥x∥2

2
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What are machine learning approaches to solving an inverse problem?

• If we have access to  training data pairs , can we learn an even better mapping 
? 

• Pick  in some model class  that best fits the training data, perhaps plus some regularization 

n yi = A(xi)
f : y ↦ x

f ℱ

̂f = arg min
f∈ℱ

L( f ) =
1
n

n

∑
i=1

∥f(yi) − xi∥2 + R( f )
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How do you solve inverse problems with a neural network?

Find   

via Gradient Descent:      

̂θ ∈ arg min
θ

L(θ) =
1
2

n

∑
i=1

∥fθ(yi) − xi∥2 + λ
L

∑
ℓ=1

∥Wℓ∥2
F

θt+1 = θt − η∇L(θt)

θ = (W1, W2, …, WL)
⋯W2W1 WL fθ(y) = WLσ (⋯σ (W2σ (W1y)))
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How do you solve inverse problems with a neural network?

• Machine learning approaches have been surprisingly successful for solving inverse problems 
Ongie et al. (2018), Barbastathis et al. (2019), Knoll et al (2020) 

• The success is especially surprising in light of the very high dimensionality of the data 

• Hypothesis: The training signals have latent low-dimensional structure that is preserved by the 
measurement operator, and neural networks are adapting to that structure, allowing for 
improved robustness to noise at test time. How does this happen?

Why do neural networks  
work so well for solving 

inverse problems?



Simplified Setting

• Let us assume that the training signals have a simple form of latent low-dimensional structure 
that is preserved by the measurement operator 

• Does a simple neural network adapt to that structure? Does this improve robustness?



 samples of this processn ≥ s

Low-dimensional structure that is preserved by the measurement operator

 and xi = Rzi ∈ ℝd yi = Axi = ARzi ∈ ℝm

ynew = Axnew + ε = ARznew + ε Measurement Noise

ε ∈ ℝm

s ≪ m ≪ d

Linear measurement operator 



preserves the subspace structure







A ∈ ℝm×d

(1 − δ)∥x∥ ≤ ∥Ax∥ ≤ (1 + δ)∥x∥
∀x ∈ range(R)




Signals live in an

 -dimensional subspace 





R ∈ ℝd×s

s
x ∈ range(R) ⊆ ℝd

Measurements live in an

 -dimensional subspace 




s
y ∈ range(AR) ⊆ ℝm



Warning: What follows is not advice on how to solve this inverse problem!

• If you know a priori that your inverse problem has this subspace structure, then there is a known way recover 
 with high accuracy 

• Oracle solution using the Moore-Penrose Pseudoinverse: 

  

• Precisely because the oracle solution exists, we can analyze how close the learned neural network is to 
doing the “right” thing 

• An inverse mapping that takes advantage of the low-dimensional structure does much better than one 
that does not 

• What does this simplified setting reveal about the ability of neural networks to automatically adapt to 
structure in data?

xnew

xnew ≈ R(AR)†ynew = XY†ynew

 and  xi = Rzi ∈ ℝd yi = Axi = ARzi ∈ ℝm

ynew = Axnew + ε = ARznew + ε

Stack  samples into matrices

 and 

n
X ∈ ℝd×n Y ∈ ℝm×n



Neural Network with Linear Activations
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Neural Network with Linear Activations
Never explicitly imposing 

low-dimensional structure!

Note: equivalent to  

But gradient descent trajectory may be different!

̂θ ∈ arg min
θ

1
2

∥WL:1Y − X∥2
F + λ∥WL:1∥2/L

S2/L



Previous work on gradient descent in linear neural networks

• Without regularization ( ) Du & Hu (2019), 
Xu et al. (2023) 

• Unrealistic initialization assumptions Hu et 

al. (2020), Hu et al. (2022), Arora et al. (2019), Nguegnang et 
al. (2024), Arora et al. (2018) 

• Step-size  very small Lewkowycz & Gur-Ari (2020), 
Gidel et al. (2019), Ji & Telgarsky (2019), Eftekhari (2020),  Bah 

et al. (2019), Pesme et al. (2021), Jacot et al. (2021), Arora et 
al. (2018), 

• SGD can only ever decrease the rank of a 
solution, but unclear if it finds a good fit 
to the data Wang & Jacot (2024)

λ = 0

η

Our analysis 
➡With regulariation ( ) 

➡Initialization essentially equivalent to 
using PyTorch default 

➡Very mild assumptions on stepsize  

➡Both adaptation to structure and 
good fit to the training data

λ > 0

η



We track the evolution of two main quantities throughout gradient descent: 

projection onto  

Good reconstructions of training data & adaptation to structure 
  robustness to noise at test-time 

 

P⊥ = range(AR)⊥

⟹

∥WL:1ynew − xnew∥2 ≤ ∥WL:1 − XY†∥2∥ynew∥2+∥XY†ynew − xnew∥2

∥WL:1 − XY†∥2 ≤ ∥WL:1Y − X∥F∥Y†∥2 + ∥WL:1P⊥∥2

So what happens in our simplified setting?
 and  
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Two phases: 
1. Rapid improvement in reconstructions of the training samples in first  iterations 
2. Slow recovery of the latent low-dimensional structure
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where  is the stepsize

prescribed by our theory

η = k ⋅ ̂η
̂η ∥WL:1Y − X∥F
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where  is the stepsize


prescribed by our theory

η = k ⋅ ̂η
̂η
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after iterations 

2. Slow recovery of the latent low-dimensional structure 
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after  iterations 

Good reconstructions of training data & adaptation to structure 
  robustness to noise at test-time 
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→



One reason neural networks work well 
for solving inverse problems is because  

they can automatically adapt to 
structure in data 



What’s next?

• What about more complex forms of low-dimensional structure in data? 

• What about more complex neural networks?  

• How does depth affect the ability to adapt to low-dimensional structure? 

• What about stochastic variants of gradient descent? Adam, etc.?



What else?

• Studying how nonlinear neural network architectures adapt to low-
dimensional structure 

• Adding linear layers to a ReLU network yields a trained network 
that mostly only varies in a few directions in the input space 
Parkinson, Ongie & Willett (2025) 

• Functions that can be represented by a deep ReLU network with 
small norm will have low-dimensional structure Jacot (2023) 

• Similar behavior can be induced with only a few ReLU layers and 
many linear layers 

• What can deeper networks do that shallower networks can’t? 
Parkinson, Ongie, Willett, Shamir & Srebro (2024)

Input
Output

x[2]

x[1]

Linear ReLULinear 
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