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Background/Motivation



Why do Neural Networks Perform Well?

Theorem (Universal Approximation Theorem for Wide Networks)
Arbitrarily wide neural networks with nonlinear activation functions
can approximate any continuous function arbitrarily well. [4]
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Why do Deep Neural Networks Perform Well?

Several approaches...

• Universal Approximators

Theorem (Universal Approximation Theorem for Deep Networks)
Width n+ 4 ReLU networks can approximate any Lebesgue
integrable function on an n-dimensional input space w.r.t. the L1
distance arbitrarily well if depth is allowed to grow arbitrarily. [2]

If width ≤ n, this is no longer true.
• Depth Separation Analysis ∃f which can be efficiently
represented at one depth but require exponential width to
represent them with shallower network. [1, 6] Such functions are
often high oscillatory; results don’t hold for functions with
bounded Lipchitz constant. [5]

Question
Why does adding layers to a neural network improve performance
in approximating the same function? 3
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Setup

• Neural Network:
f(x) = a⊤σ(Wx− b) + c

• Deep Neural Network:

f(x) = a⊤σ3(W3σ2(W2σ1(W1x− b1)− b2)− b3) + c

• ReLU Networks: σ(x) = max(x, 0) := [x]+
• Ideally, we could answer why ReLU activation deep neural
networks work as they do

• Simplify by assuming previous layers are linear

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Why would this help?
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Setup: Linear Layers

• L− 1 Linear Layers followed by ReLU final layer:

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Adding linear layers increase the capacity of a shallow network.
Just reparameterizes it

• When we train with weight decay, reparameterizations can affect
the associated inductive bias, and therefore which Neural
Network is selected
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Example

6



Inductive bias



Inductive bias

Regularized Empirical Risk Minimization Framework

• Parameterization view:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(fθ(xi), yi) + η CL(θ)︸ ︷︷ ︸
Regularization

• Function-space view:

f̂ = argmin
f

1
N

N∑
i=1

ℓ(f(xi), yi) + η RL(f)︸︷︷︸
Regularization

• Weight Decay:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(f(xi), yi) + η
1
L

∥a∥22 +
L−1∑
j=1

∥Wj∥2F


︸ ︷︷ ︸

CL(θ)

• Inductive bias: What is RL(f)? What kinds of functions will we
learn using regularization penalty RL?
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Notation

• f : Rd → R
• Neural network parameterizations

θ = (W, a,b, c) =
(L−1∏
i=1

Wi, a,b, c
)

• Denote row k in W by wk, and number of ReLU units (i.e. rows in
W) is K

• A generic neural network with parameterization θ:

hθ(x) = a⊤ [Wx− b]+ + c =
K∑
k=1

ak
[
w⊤
k x− bk

]
+
+ c

Definition

RL(f) := min
θ:h(2)θ =f

CL(θ) = min
θ:h(2)θ =f

1
L

∥a∥22 +
L−1∑
j=1

∥Wj∥2F
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Expressions for RL

Definition (Schatten (Quasi)-Norm)
Given a matrix M,

∥M∥Sq :=

rank(M)∑
i=1

σi(M)q
1/q

.

This is a norm for q ∈ [1,∞] and a quasi-norm for q ∈ (0, 1)

Fact
As q→ 0, ∥M∥qSq → rank(M)

Lemma (Ongie & Willett)

RL(f) = min
θ:h(2)θ =f

1
L∥a∥

2
2 +

L− 1
L ∥W∥2/(L−1)S2/(L−1)

9



Rescaling Invariance

• Observe that ∀λ > 0,

ak
[
w⊤
k x− bk

]
+
+ c = ak

λ

[
λw⊤

k x− bk
]
+
+ c

• Similarly, ∀λ ≻ 0,

a⊤ [Wx− b]+ + c =
(
D−1
λ a
)⊤

[DλWx− b]+ + c

• Using this rescaling invariance, we get

RL(f) = min
θ:h(2)θ =f

inf
λ≻0

1
L∥D

−1
λ a∥22 +

L− 1
L ∥DλW∥2/(L−1)S2/(L−1)︸ ︷︷ ︸

ΦL(W,a)
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Expression for ΦL

Lemma (Ongie & Willett)

ΦL(W, a) = inf
λ≻0

∥λ∥2=1

∥D−1
λ DaW∥2/LS2/(L−1)

Definition (Path Norm)
When L = 2, the infimum in ΦL can be computed explicitly as

Φ2(W, a) =
K∑
k=1

|ak|∥wk∥2

and

R2(f) = min
θ:h(2)θ =f

K∑
k=1

|ak|∥wk∥2.

This is sometimes called the path norm. [3]
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Bounds for ΦL

Lemma (P & Ongie & Willett)

∥DaW∥2/LS2/L ≤ ΦL(W, a) ≤ rank(DaW)
L−2
L

( K∑
k=1

|ak|∥wk∥2

)2/L

12



Mixed-Variation Functions



Mixed-Variation Functions

Definition
A function f is a mixed-variation function if f(x) = f(PSx) ∀x where
PS is the projection onto a subspace S. The subspace S of smallest
dimension satisfying the above is called the active subspace of f.
The rank of f is the dimension of the active subspace.

• V an orthonormal basis for S =⇒ PS = VV⊤

• f(x) = g(V⊤x) for some function g : Rr → R

• ∀f that can be represented as a two-layer neural network,

rank(f) = min
θ:h(2)θ =f

rank(DaW)
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Function-Rank Bound on RL

Lemma (P & Ongie & Willett)

min
θ:h(2)θ =f

∥DaW∥2/LS2/L ≤ RL(f) ≤ rank(f)
L−2
L R2(f)2/L
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Gradient Covariance Matrix

Definition
Fix a probability distribution ρ on Rd. The gradient covariance
matrix of a function f is

Cf := Eρ

[
∇f(x)∇f(x)⊤

]

• rank(f) = rank(Cf)
• If Cf = VΛV⊤ is an orthonormal eigendecomposition, then V is a
basis for the active subspace.
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Single/Multi-Index Model Approach

1. Estimate Active Subspace V̂, e.g. the top r eigenvectors of some
empirical estimate of Ĉf

2. Estimate ĝ in lower-dimensional space
3. Estimated function is f̂(x) = ĝ(V̂⊤x)

Conjecture
Adding linear layers to a neural network effectively does all of this
at once, and adaptively chooses dimension of active subspace.
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Singular Values of Cf & Mixed-Variation Norm

Let σi(f) := σi(C
1/2
f ). Variance of directional derivative associated with

eigenvector i of Cf.

Definition

∥f∥MV,q := ∥C1/2f ∥Sq =

rank(f)∑
i=1

σi(f)q
1/q

Lemma (P & Ongie & Willett)

∥f∥2/LMV,2/(L−1) ≤ RL(f)
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Singular Values of Trained Neural Networks

Let
f̂L := argmin

f
RL(f) s.t. f(xj) = yj ∀j.

If a rank-r Neural Network interpolant f∗r of the data exists, then let

Ar :=
R2(f∗r )

infL ∥̂fL∥MV,∞
.

Then
σk+1(̂fL)
σ1(̂fL)

≤

(
rA2/(L−1)r − 1

k

)(L−1)/2
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Summary and Future Work



Takeaway

Linear layers = Approximate rank penalty
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Takeaway

Linear layers = Approximate rank penalty = Better Generalization??

20



Preliminary Empirical Results
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Questions?
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