
Finding Low-Rank Functions Using Linear
Layers in Neural Networks

Sue Parkinson

University of Chicago Committee on Computational and Applied Mathematics

Table of contents

1. Background/Motivation

2. Inductive bias

3. Mixed-Variation Functions

4. Summary and Future Work

1

Background/Motivation

Why do Neural Networks Perform Well?

Theorem (Universal Approximation Theorem for Wide Networks)
Arbitrarily wide neural networks with nonlinear activation functions
can approximate any continuous function arbitrarily well. [4]

2

Why do Deep Neural Networks Perform Well?

Several approaches...

• Universal Approximators

Theorem (Universal Approximation Theorem for Deep Networks)
Width n+ 4 ReLU networks can approximate any Lebesgue
integrable function on an n-dimensional input space w.r.t. the L1
distance arbitrarily well if depth is allowed to grow arbitrarily. [2]

If width ≤ n, this is no longer true.
• Depth Separation Analysis ∃f which can be efficiently
represented at one depth but require exponential width to
represent them with shallower network. [1, 6] Such functions are
often high oscillatory; results don’t hold for functions with
bounded Lipchitz constant. [5]

Question
Why does adding layers to a neural network improve performance
in approximating the same function? 3

Why do Deep Neural Networks Perform Well?

Several approaches...

• Universal Approximators

Theorem (Universal Approximation Theorem for Deep Networks)
Width n+ 4 ReLU networks can approximate any Lebesgue
integrable function on an n-dimensional input space w.r.t. the L1
distance arbitrarily well if depth is allowed to grow arbitrarily. [2]

If width ≤ n, this is no longer true.
• Depth Separation Analysis ∃f which can be efficiently
represented at one depth but require exponential width to
represent them with shallower network. [1, 6] Such functions are
often high oscillatory; results don’t hold for functions with
bounded Lipchitz constant. [5]

Question
Why does adding layers to a neural network improve performance
in approximating the same function? 3

Why do Deep Neural Networks Perform Well?

Several approaches...

• Universal Approximators

Theorem (Universal Approximation Theorem for Deep Networks)
Width n+ 4 ReLU networks can approximate any Lebesgue
integrable function on an n-dimensional input space w.r.t. the L1
distance arbitrarily well if depth is allowed to grow arbitrarily. [2]

If width ≤ n, this is no longer true.
• Depth Separation Analysis ∃f which can be efficiently
represented at one depth but require exponential width to
represent them with shallower network. [1, 6] Such functions are
often high oscillatory; results don’t hold for functions with
bounded Lipchitz constant. [5]

Question
Why does adding layers to a neural network improve performance
in approximating the same function? 3

Why do Deep Neural Networks Perform Well?

Several approaches...

• Universal Approximators

Theorem (Universal Approximation Theorem for Deep Networks)
Width n+ 4 ReLU networks can approximate any Lebesgue
integrable function on an n-dimensional input space w.r.t. the L1
distance arbitrarily well if depth is allowed to grow arbitrarily. [2]

If width ≤ n, this is no longer true.
• Depth Separation Analysis ∃f which can be efficiently
represented at one depth but require exponential width to
represent them with shallower network. [1, 6] Such functions are
often high oscillatory; results don’t hold for functions with
bounded Lipchitz constant. [5]

Question
Why does adding layers to a neural network improve performance
in approximating the same function? 3

Setup

• Neural Network:
f(x) = a⊤σ(Wx− b) + c

• Deep Neural Network:

f(x) = a⊤σ3(W3σ2(W2σ1(W1x− b1)− b2)− b3) + c

• ReLU Networks: σ(x) = max(x, 0) := [x]+
• Ideally, we could answer why ReLU activation deep neural
networks work as they do

• Simplify by assuming previous layers are linear

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Why would this help?

4

Setup

• Neural Network:
f(x) = a⊤σ(Wx− b) + c

• Deep Neural Network:

f(x) = a⊤σ3(W3σ2(W2σ1(W1x− b1)− b2)− b3) + c

• ReLU Networks: σ(x) = max(x, 0) := [x]+
• Ideally, we could answer why ReLU activation deep neural
networks work as they do

• Simplify by assuming previous layers are linear

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Why would this help?

4

Setup

• Neural Network:
f(x) = a⊤σ(Wx− b) + c

• Deep Neural Network:

f(x) = a⊤σ3(W3σ2(W2σ1(W1x− b1)− b2)− b3) + c

• ReLU Networks: σ(x) = max(x, 0) := [x]+
• Ideally, we could answer why ReLU activation deep neural
networks work as they do

• Simplify by assuming previous layers are linear

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Why would this help?

4

Setup

• Neural Network:
f(x) = a⊤σ(Wx− b) + c

• Deep Neural Network:

f(x) = a⊤σ3(W3σ2(W2σ1(W1x− b1)− b2)− b3) + c

• ReLU Networks: σ(x) = max(x, 0) := [x]+
• Ideally, we could answer why ReLU activation deep neural
networks work as they do

• Simplify by assuming previous layers are linear

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Why would this help?

4

Setup

• Neural Network:
f(x) = a⊤σ(Wx− b) + c

• Deep Neural Network:

f(x) = a⊤σ3(W3σ2(W2σ1(W1x− b1)− b2)− b3) + c

• ReLU Networks: σ(x) = max(x, 0) := [x]+
• Ideally, we could answer why ReLU activation deep neural
networks work as they do

• Simplify by assuming previous layers are linear

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Why would this help?

4

Setup

• Neural Network:
f(x) = a⊤σ(Wx− b) + c

• Deep Neural Network:

f(x) = a⊤σ3(W3σ2(W2σ1(W1x− b1)− b2)− b3) + c

• ReLU Networks: σ(x) = max(x, 0) := [x]+
• Ideally, we could answer why ReLU activation deep neural
networks work as they do

• Simplify by assuming previous layers are linear

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Why would this help?

4

Setup: Linear Layers

• L− 1 Linear Layers followed by ReLU final layer:

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Adding linear layers increase the capacity of a shallow network.
Just reparameterizes it

• When we train with weight decay, reparameterizations can affect
the associated inductive bias, and therefore which Neural
Network is selected

5

Setup: Linear Layers

• L− 1 Linear Layers followed by ReLU final layer:

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Adding linear layers increase the capacity of a shallow network.
Just reparameterizes it

• When we train with weight decay, reparameterizations can affect
the associated inductive bias, and therefore which Neural
Network is selected

5

Setup: Linear Layers

• L− 1 Linear Layers followed by ReLU final layer:

f(x) = a⊤
[L−1∏
i=1

Wix− b
]
+

+ c

• Adding linear layers increase the capacity of a shallow network.
Just reparameterizes it

• When we train with weight decay, reparameterizations can affect
the associated inductive bias, and therefore which Neural
Network is selected

5

Example

6

Inductive bias

Inductive bias

Regularized Empirical Risk Minimization Framework

• Parameterization view:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(fθ(xi), yi) + η CL(θ)︸ ︷︷ ︸
Regularization

• Function-space view:

f̂ = argmin
f

1
N

N∑
i=1

ℓ(f(xi), yi) + η RL(f)︸︷︷︸
Regularization

• Weight Decay:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(f(xi), yi) + η
1
L

∥a∥22 +
L−1∑
j=1

∥Wj∥2F

︸ ︷︷ ︸

CL(θ)

• Inductive bias: What is RL(f)? What kinds of functions will we
learn using regularization penalty RL?

7

Inductive bias

Regularized Empirical Risk Minimization Framework

• Parameterization view:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(fθ(xi), yi) + η CL(θ)︸ ︷︷ ︸
Regularization

• Function-space view:

f̂ = argmin
f

1
N

N∑
i=1

ℓ(f(xi), yi) + η RL(f)︸︷︷︸
Regularization

• Weight Decay:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(f(xi), yi) + η
1
L

∥a∥22 +
L−1∑
j=1

∥Wj∥2F

︸ ︷︷ ︸

CL(θ)

• Inductive bias: What is RL(f)? What kinds of functions will we
learn using regularization penalty RL?

7

Inductive bias

Regularized Empirical Risk Minimization Framework

• Parameterization view:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(fθ(xi), yi) + η CL(θ)︸ ︷︷ ︸
Regularization

• Function-space view:

f̂ = argmin
f

1
N

N∑
i=1

ℓ(f(xi), yi) + η RL(f)︸︷︷︸
Regularization

• Weight Decay:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(f(xi), yi) + η
1
L

∥a∥22 +
L−1∑
j=1

∥Wj∥2F

︸ ︷︷ ︸

CL(θ)

• Inductive bias: What is RL(f)? What kinds of functions will we
learn using regularization penalty RL?

7

Inductive bias

Regularized Empirical Risk Minimization Framework

• Parameterization view:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(fθ(xi), yi) + η CL(θ)︸ ︷︷ ︸
Regularization

• Function-space view:

f̂ = argmin
f

1
N

N∑
i=1

ℓ(f(xi), yi) + η RL(f)︸︷︷︸
Regularization

• Weight Decay:

θ̂ = argmin
θ

1
N

N∑
i=1

ℓ(f(xi), yi) + η
1
L

∥a∥22 +
L−1∑
j=1

∥Wj∥2F

︸ ︷︷ ︸

CL(θ)

• Inductive bias: What is RL(f)? What kinds of functions will we
learn using regularization penalty RL?

7

Notation

• f : Rd → R
• Neural network parameterizations

θ = (W, a,b, c) =
(L−1∏
i=1

Wi, a,b, c
)

• Denote row k in W by wk, and number of ReLU units (i.e. rows in
W) is K

• A generic neural network with parameterization θ:

hθ(x) = a⊤ [Wx− b]+ + c =
K∑
k=1

ak
[
w⊤
k x− bk

]
+
+ c

Definition

RL(f) := min
θ:h(2)θ =f

CL(θ) = min
θ:h(2)θ =f

1
L

∥a∥22 +
L−1∑
j=1

∥Wj∥2F

8

Expressions for RL

Definition (Schatten (Quasi)-Norm)
Given a matrix M,

∥M∥Sq :=

rank(M)∑
i=1

σi(M)q
1/q

.

This is a norm for q ∈ [1,∞] and a quasi-norm for q ∈ (0, 1)

Fact
As q→ 0, ∥M∥qSq → rank(M)

Lemma (Ongie & Willett)

RL(f) = min
θ:h(2)θ =f

1
L∥a∥

2
2 +

L− 1
L ∥W∥2/(L−1)S2/(L−1)

9

Rescaling Invariance

• Observe that ∀λ > 0,

ak
[
w⊤
k x− bk

]
+
+ c = ak

λ

[
λw⊤

k x− bk
]
+
+ c

• Similarly, ∀λ ≻ 0,

a⊤ [Wx− b]+ + c =
(
D−1
λ a
)⊤

[DλWx− b]+ + c

• Using this rescaling invariance, we get

RL(f) = min
θ:h(2)θ =f

inf
λ≻0

1
L∥D

−1
λ a∥22 +

L− 1
L ∥DλW∥2/(L−1)S2/(L−1)︸ ︷︷ ︸

ΦL(W,a)

10

Rescaling Invariance

• Observe that ∀λ > 0,

ak
[
w⊤
k x− bk

]
+
+ c = ak

λ

[
λw⊤

k x− bk
]
+
+ c

• Similarly, ∀λ ≻ 0,

a⊤ [Wx− b]+ + c =
(
D−1
λ a
)⊤

[DλWx− b]+ + c

• Using this rescaling invariance, we get

RL(f) = min
θ:h(2)θ =f

inf
λ≻0

1
L∥D

−1
λ a∥22 +

L− 1
L ∥DλW∥2/(L−1)S2/(L−1)︸ ︷︷ ︸

ΦL(W,a)

10

Rescaling Invariance

• Observe that ∀λ > 0,

ak
[
w⊤
k x− bk

]
+
+ c = ak

λ

[
λw⊤

k x− bk
]
+
+ c

• Similarly, ∀λ ≻ 0,

a⊤ [Wx− b]+ + c =
(
D−1
λ a
)⊤

[DλWx− b]+ + c

• Using this rescaling invariance, we get

RL(f) = min
θ:h(2)θ =f

inf
λ≻0

1
L∥D

−1
λ a∥22 +

L− 1
L ∥DλW∥2/(L−1)S2/(L−1)︸ ︷︷ ︸

ΦL(W,a)

10

Expression for ΦL

Lemma (Ongie & Willett)

ΦL(W, a) = inf
λ≻0

∥λ∥2=1

∥D−1
λ DaW∥2/LS2/(L−1)

Definition (Path Norm)
When L = 2, the infimum in ΦL can be computed explicitly as

Φ2(W, a) =
K∑
k=1

|ak|∥wk∥2

and

R2(f) = min
θ:h(2)θ =f

K∑
k=1

|ak|∥wk∥2.

This is sometimes called the path norm. [3]

11

Bounds for ΦL

Lemma (P & Ongie & Willett)

∥DaW∥2/LS2/L ≤ ΦL(W, a) ≤ rank(DaW)
L−2
L

(K∑
k=1

|ak|∥wk∥2

)2/L

12

Mixed-Variation Functions

Mixed-Variation Functions

Definition
A function f is a mixed-variation function if f(x) = f(PSx) ∀x where
PS is the projection onto a subspace S. The subspace S of smallest
dimension satisfying the above is called the active subspace of f.
The rank of f is the dimension of the active subspace.

• V an orthonormal basis for S =⇒ PS = VV⊤

• f(x) = g(V⊤x) for some function g : Rr → R

• ∀f that can be represented as a two-layer neural network,

rank(f) = min
θ:h(2)θ =f

rank(DaW)

13

Mixed-Variation Functions

Definition
A function f is a mixed-variation function if f(x) = f(PSx) ∀x where
PS is the projection onto a subspace S. The subspace S of smallest
dimension satisfying the above is called the active subspace of f.
The rank of f is the dimension of the active subspace.

• V an orthonormal basis for S =⇒ PS = VV⊤

• f(x) = g(V⊤x) for some function g : Rr → R

• ∀f that can be represented as a two-layer neural network,

rank(f) = min
θ:h(2)θ =f

rank(DaW)

13

Mixed-Variation Functions

Definition
A function f is a mixed-variation function if f(x) = f(PSx) ∀x where
PS is the projection onto a subspace S. The subspace S of smallest
dimension satisfying the above is called the active subspace of f.
The rank of f is the dimension of the active subspace.

• V an orthonormal basis for S =⇒ PS = VV⊤

• f(x) = g(V⊤x) for some function g : Rr → R

• ∀f that can be represented as a two-layer neural network,

rank(f) = min
θ:h(2)θ =f

rank(DaW)

13

Mixed-Variation Functions

Definition
A function f is a mixed-variation function if f(x) = f(PSx) ∀x where
PS is the projection onto a subspace S. The subspace S of smallest
dimension satisfying the above is called the active subspace of f.
The rank of f is the dimension of the active subspace.

• V an orthonormal basis for S =⇒ PS = VV⊤

• f(x) = g(V⊤x) for some function g : Rr → R

• ∀f that can be represented as a two-layer neural network,

rank(f) = min
θ:h(2)θ =f

rank(DaW)

13

Function-Rank Bound on RL

Lemma (P & Ongie & Willett)

min
θ:h(2)θ =f

∥DaW∥2/LS2/L ≤ RL(f) ≤ rank(f)
L−2
L R2(f)2/L

14

Gradient Covariance Matrix

Definition
Fix a probability distribution ρ on Rd. The gradient covariance
matrix of a function f is

Cf := Eρ

[
∇f(x)∇f(x)⊤

]

• rank(f) = rank(Cf)
• If Cf = VΛV⊤ is an orthonormal eigendecomposition, then V is a
basis for the active subspace.

15

Gradient Covariance Matrix

Definition
Fix a probability distribution ρ on Rd. The gradient covariance
matrix of a function f is

Cf := Eρ

[
∇f(x)∇f(x)⊤

]

• rank(f) = rank(Cf)
• If Cf = VΛV⊤ is an orthonormal eigendecomposition, then V is a
basis for the active subspace.

15

Single/Multi-Index Model Approach

1. Estimate Active Subspace V̂, e.g. the top r eigenvectors of some
empirical estimate of Ĉf

2. Estimate ĝ in lower-dimensional space
3. Estimated function is f̂(x) = ĝ(V̂⊤x)

Conjecture
Adding linear layers to a neural network effectively does all of this
at once, and adaptively chooses dimension of active subspace.

16

Singular Values of Cf & Mixed-Variation Norm

Let σi(f) := σi(C
1/2
f). Variance of directional derivative associated with

eigenvector i of Cf.

Definition

∥f∥MV,q := ∥C1/2f ∥Sq =

rank(f)∑
i=1

σi(f)q
1/q

Lemma (P & Ongie & Willett)

∥f∥2/LMV,2/(L−1) ≤ RL(f)

17

Singular Values of Trained Neural Networks

Let
f̂L := argmin

f
RL(f) s.t. f(xj) = yj ∀j.

If a rank-r Neural Network interpolant f∗r of the data exists, then let

Ar :=
R2(f∗r)

infL ∥̂fL∥MV,∞
.

Then
σk+1(̂fL)
σ1(̂fL)

≤

(
rA2/(L−1)r − 1

k

)(L−1)/2

18

Summary and Future Work

Takeaway

Linear layers = Approximate rank penalty

19

Takeaway

Linear layers = Approximate rank penalty = Better Generalization??

20

Preliminary Empirical Results

21

Questions?

21

References i

A. Daniely.
Depth separation for neural networks.
In Conference on Learning Theory, pages 690–696. PMLR, 2017.

Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang.
The expressive power of neural networks: A view from the
width.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

22

References ii

B. Neyshabur, S. Bhojanapalli, D. Mcallester, and N. Srebro.
Exploring generalization in deep learning.
Advances in Neural Information Processing Systems,
30:5947–5956, 2017.
A. Pinkus.
Approximation theory of the mlp model in neural networks.
Acta Numerica, 8:143–195, 1999.
I. Safran, R. Eldan, and O. Shamir.
Depth separations in neural networks: what is actually being
separated?
In Conference on Learning Theory, pages 2664–2666. PMLR, 2019.
http:
//proceedings.mlr.press/v99/safran19a/safran19a.pdf.

23

http://proceedings.mlr.press/v99/safran19a/safran19a.pdf
http://proceedings.mlr.press/v99/safran19a/safran19a.pdf

References iii

G. Vardi and O. Shamir.
Neural networks with small weights and depth-separation
barriers.
arXiv preprint arXiv:2006.00625, 2020.

24

	Background/Motivation
	Inductive bias
	Mixed-Variation Functions
	Summary and Future Work

