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Open Questions & Extensions
• Depth separation between other depths?

• Other architectures beyond MLPs? 

• We’ve implicitly assumed that we’re close to global minima of 

our objective. How does optimization and the loss-landscape 
affect learning at different depths?

Easy with depth 3a     Easy with depth 2

PAC Learning
• The output of a learning rule  trained with  samples is 

-Probably Approximately Correct if with probability  over 
the training samples , the generalization error is 
less than :




• If our learning rule  gives a model that is -Probably 

Approximately Correct using  samples, then we say that 
we can learn with sample complexity .

𝒜 m (ε, δ)
1 − δ

S = {(xi, yi)}m
i=1

ε
ℒ𝒟(𝒜(S)) := 𝔼x∼𝒟 [(𝒜(S)(x) − f (x))2] < ε .

𝒜 (ε, δ)
m(ε, δ)

m(ε, δ)

Are depth-2 or depth-3 neural networks 
better at learning?

fϕ(x) = a⊤σ (WL−1 ⋅ σ (⋯σ (W2σ (W1x))))

ϕ = (W1, W2, …, WL−1, a)
σ(x) = ReLU(x) = max(0,x)
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Understanding representation costs across different depths 
helps us understand gaps in learning capabilities

𝒜L(S ) ∈ arg min
g∈𝒩L

ℒS(g) + λRL(g) where RL(g) = inf
ϕ

CL(ϕ) s.t. fϕ = g
Representation Cost

Weight Decay & Representation Cost

Weight Decay Cost

̂ϕS ∈ arg min
ϕ

ℒS( fϕ) + λCL(ϕ) where CL(ϕ) =
1
L (

L−1

∑
ℓ=1

∥Wℓ∥2
F + ∥a∥2

2)

Controlling Generalization Error
• We often end up with error bounds like this:





• Approximation error: Need existence of one good 
approximator .12 Both depth 2 and 3 networks of arbitrary 
width are universal approximations of continuous functions.


• Estimation error: Controlled using size of , here analyzed in 
terms of Rademacher complexity.34 Naively, depth 3 networks 
have more parameters and so form a bigger model class

ℒ𝒟(𝒜(S)) ≤ inf
g∈𝒢

ℒ𝒟(g) + 2 sup
g∈𝒢

|ℒS(g) − ℒ𝒟(g) |

g ∈ 𝒢

𝒢
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What if we measure model size in terms of norm of parameters 
instead of number of parameters?45

 that requires exponential width (in dimension) with depth 2 
but only polynomial width with depth 3 to be approximated.678

∃f

Depth Separation in Approximation

• , 

• Depth-2 vs. Depth 3 learning rules:


     vs.     

x ∼ Unif(Sd−1 × Sd−1) f (x) ∈ [−1,1]

𝒜2(S) ∈ arg min
g∈𝒩2

ℒS(g) + λ2R2(g)

𝒜3(S) ∈ arg min
g∈𝒩3

ℒS(g) + λ3R3(g)

 that requires exponential sample complexity with depth 2 
but only polynomial sample complexity with depth 3 to learn.
∃f

Depth Separation in Learning

 that can be learned with polynomial sample complexity 
with depth 2 can also be learned with polynomial sample 

complexity with depth 3.
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Key Idea: Choose  so that…f
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