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What is learning?

• Ideally     )(S) = f

• Or at least the generalization error/expected loss 
  

is small.
ℒ%()(S)) := ,x∼% [()(S)(x) − f(x))2]

• Since we only train on finitely many samples and we’re using a 
limited model class, the best we can hope for is to be Probably 
Approximately Correct (PAC).

ℒ%()(S)) ≫ 0
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Probably Approximately Correct (PAC) Learning

Definition: The output of a learning rule  trained with  samples is 
-Probably Approximately Correct if with probability  over the training 

samples , the generalization error is less than : 

) m
(ε, δ) 1 − δ

S = {(xi, yi)}m
i=1 ε

ℒ%()(S)) < ε .

If our learning rule  gives a model that is -Probably 
Approximately Correct using  samples, then we say 

that we can learn with sample complexity .

) (ε, δ)
m(ε, δ)

m(ε, δ)
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• We often end up with error bounds like this:

• Approximation error: Controlled using Universal Approximation Theorems. Need existence of 
one good approximator . Hornik (1991), Shen et al. (2022)g ∈ (

• Estimation error: Controlled using size of , as measured by VC-dimension, Rademacher 
complexity, metric entropy, etc. Vapnik & Chervonenkis (1971), Bartlett & Mendelson (2001), 
Neyshabur et al. (2015), 

(
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What kinds of functions have small representation cost? 

How does the representation cost depend on depth ( )? L
Can understanding representation costs across different depths help us 

understand gaps in learning capabilities?
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• Universal approximator of 
continuous functions with arbitrary 
width. Hornik (1991)

• Fewer parameters = smaller model 
class

Depth-2 ReLU Network Depth-3 ReLU Network

• Universal approximator of 
continuous functions with arbitrary 
width. Hornik (1991)

• More parameters = bigger model 
class
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In lots of deep learning problems, bigger seems to be better



What if we measure model size in 
terms of norm of parameters 

instead of number of parameters? 
Bartlett 1996, Neyshabur, Tomioka & Srebro 2015 
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Depth Separation:  that is “hard” with depth 2 but “easy" with depth 3∃f

Key: Choose  so that…f
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Large representation cost with depth 2 
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Proof Sketch: 
• ,    

• A slight modification of Daniely (2017) construction for depth 
separation in width to approximate 

• Daniely showed that depth 2 networks need to be very wide to 
approximate functions that are compositions of a function that is 
very non-polynomial with an inner-product 

• Naturally approximated by a depth 3 network… 

• The inner product can be approximated with first hidden layer 

• Sawtooth function can be expressed exactly with second hidden 
layer

x ∼ Unif(Sd−1 × Sd−1) f(x) = ψ3d ( d⟨x(1), x(2)⟩)

Depth Separation:  that is “hard” with depth 2 but “easy" with depth 3∃f

Expensive

fϕ(x)x[2]
x[3]

x[1]

Cheap

fϕ(x)x[2]
x[3]

x[1]



Proof Sketch: “Hard” with   

• With probability , a depth 2 interpolant of the 
samples  exists with  

•  

• If  then  

• Therefore,  unless 

)2(S) ∈ arg min
g∈42

ℒS(g) + λ2R2(g)

1 − δ
̂f R2( ̂f ) ≤ O( |S |2 )

R2()2(S)) ≤ R2( ̂f ) = O( |S |2 )

R2()2(S)) < 2Ω(d) ℒ%()2(S)) ≥ 10−4

ℒ%()2(S)) ≥ 10−4 |S | = 2Ω(d)

Depth Separation:  that is “hard” with depth 2 but “easy" with depth 3∃f

Expensive

x[2]
x[3]

x[1]
fϕ(x)

ℒS()2(S)) + λ2R2()2(S)) ≤ ℒS( ̂f ) + λ2R2( ̂f )

ℒS()2(S)) + λ2R2()2(S)) ≤ λ2R2( ̂f )
λ2R2()2(S)) ≤ λ2R2( ̂f )



Proof Sketch: “Easy” with  

•   of depth 3 with  and  

• Because of how we choose , we get  

 
• Rademacher complexity analysis: If , then with probability , 

 

Neyshabur et al. 2015 

• Therefore,  as long as 
 

)3(S) ∈ arg min
g∈43

ℒS(g) + λ3R3(g)

∃fε ℒ%( fε) ≤ ε/2 R3( fε) ≤ poly(d)

λ3 R3()3(S)) ≤ R3( fε) ≤ poly(d)

ℒ%()3(S)) ≤ inf
R3(g)≤poly(d)

ℒ%(g) + 2 sup
R3(g)≤poly(d)

|ℒS(g) − ℒ%(g) |

Approximation Error Estimation Error
Generalization Error  

(expected loss)

R3(g) ≤ poly(d) 1 − δ

|ℒ%(g) − ℒS(g) | ≤ poly(d) log 1/δ
|S |

ℒ%()3(S)) ≤ ε
|S | = poly(d)ε−2 log(1/δ)

Depth Separation:  that is “hard” with depth 2 but “easy" with depth 3∃f

Cheap

fϕ(x)x[2]
x[3]

x[1]



No Reverse Depth Separation:  “easy” with depth 2  “easy” with depth 3f ⟹

Key:

Cheap

Small representation cost with depth 2 

fϕ(x)x[2]
x[3]

x[1]

ReLU

Input

Output

Cheap

Small representation cost with depth 3

fϕ(x)x[2]
x[3]

x[1]

ReLUReLU

Input

Output

⟹



Proof Sketch: 

• If  learns with polynomial sample complexity,  of depth 2 such that 
 and . 

•  

• Because of how we choose , we get 

 
• Therefore, using similar Rademacher complexity analysis,  as 

long as

)2(S) ∃fε
ℒ%( fε) ≤ ε/2 R2( fε) ≤ poly(d, ε−1)

R3( fε) = O (d + R2( fε)) ≤ poly(d, ε−1)

λ3 R3()3(S)) ≤ R3( fε) ≤ poly(d, ε−1)

ℒ%()3(S)) ≤ inf
R3(g)≤poly(d,ε−1)

ℒ%(g) + 2 sup
R3(g)≤poly(d,ε−1)

|ℒS(g) − ℒ%(g) |

Approximation Error Estimation Error
Generalization Error  

(expected loss)

ℒ%()3(S)) ≤ ε
|S | = poly(d, ε−1)log(1/δ)

No Reverse Depth Separation:  “easy” with depth 2  “easy” with depth 3f ⟹

Cheap

fϕ(x)x[2]
x[3]

x[1]
⟹

Cheap

fϕ(x)x[2]
x[3]

x[1]



Functions that are “easy” to learn with depth 2 networks 
form a strict subset of functions that are “easy” to learn 

with depth 3 networks.

Easy with depth 3a     Easy with depth 2



Open Questions & Extensions

• Depth separation between other depths— 3 vs. 4? Deeper? 

• Other architectures beyond MLPs? CNNs, ResNets, etc.? 

• We’ve implicitly assumed that we’re close to global minima of our objective. How does 
optimization and the loss-landscape affect learning at different depths?
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