Depth Separation in Learning

Suzanna Parkinson, Ph.D. Candidate
University of Chicago
Committee on Computational and Applied Mathematics

Depth Separation: Gaps in behavior between neural networks at different depths

• Approximation Width: $\exists f$ you can approximate with many **fewer** units using deeper networks

Pinkus 1999, Telgarsky (2016), Eldan & Shamir (2016), Daniely (2017), Safran et al. (2021)

• Representation Cost: $\exists f$ you can represent with much **smaller** parameters using deeper networks

Ongie et al. (2019)

How does this translate to gaps in generalization & learning?

What do we mean by learning?

- True underlying distribution $\mathbf{x} \sim \mathcal{D}$, $y = f(\mathbf{x})$
- Receive m training examples/samples $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$
- Use a **learning rule** $\mathscr{A}(S)$ to choose a model from a **model class** based on training samples

Ex: Try to minimize **sample loss:**
$$\mathscr{A}(S) \in \arg\min_{g \in \mathscr{G}} \mathscr{L}_{S}(g) := \frac{1}{m} \sum_{i=1}^{m} \left(g(\mathbf{x}_{i}) - y_{i} \right)^{2}$$

Want small generalization error/expected loss

$$\mathscr{L}_{\mathscr{D}}(\mathscr{A}(S)) := \mathbb{E}_{\mathbf{x} \sim \mathscr{D}} \left[\left(\mathscr{A}(S)(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] = \| \mathscr{A}(S) - f \|_{L_{2}(\mathscr{D})}$$

- Only get finitely many training samples
- Using a limited model class

⇒Best we can hope for is to be **Probably Approximately Correct (PAC)**.

Probably Approximately Correct (PAC) Learning

Definition: The output of a learning rule \mathscr{A} trained with m samples is (ε, δ) -Probably Approximately Correct if with probability $1 - \delta$ over the training samples $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, the **generalization error** is less than ε : $\mathscr{L}_{\varnothing}(\mathscr{A}(S)) < \varepsilon$.

If our learning rule \mathscr{A} gives a model that is (ε, δ) -Probably Approximately Correct using $m(\varepsilon, \delta)$ samples, then we say that we can

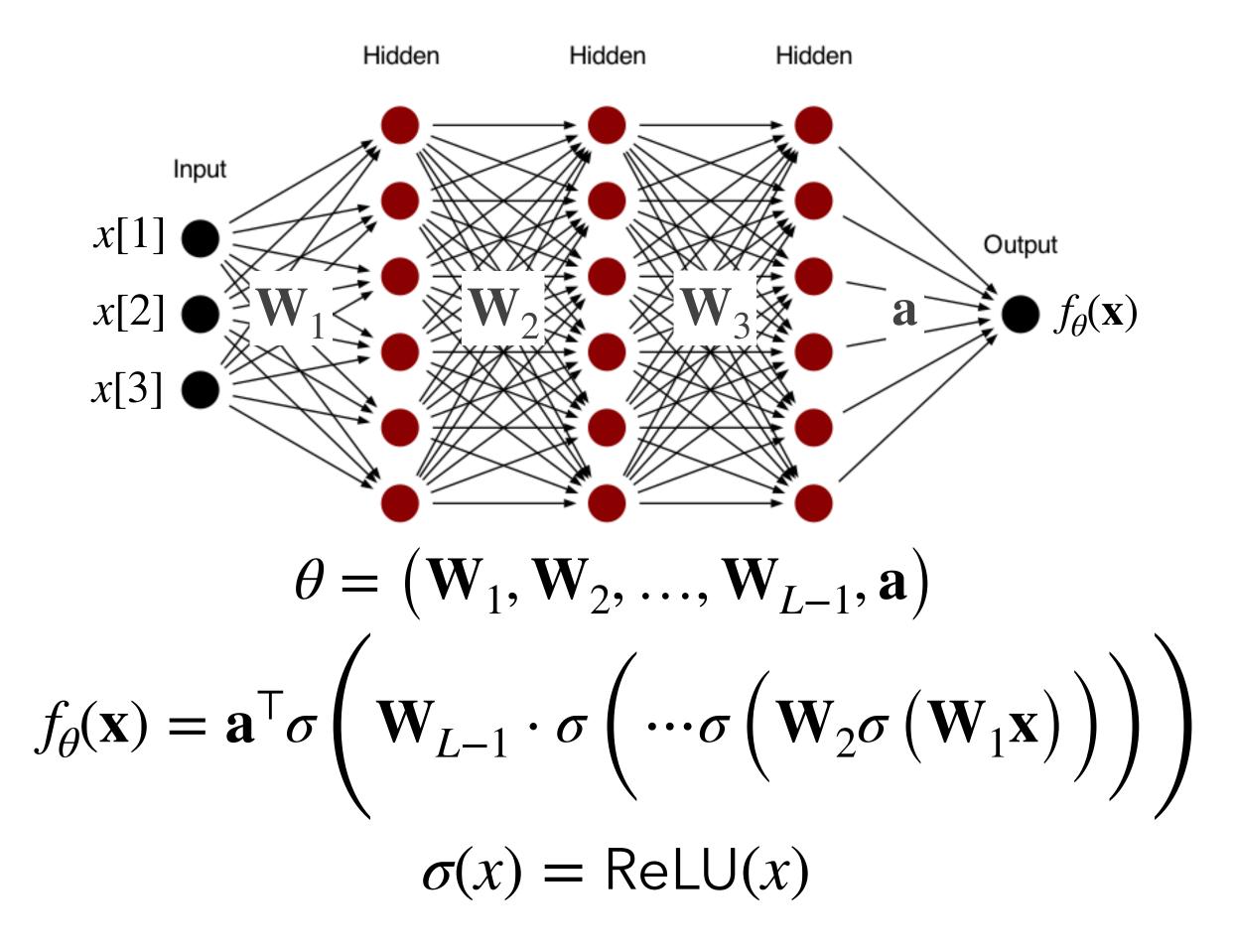
learn with sample complexity $m(\varepsilon, \delta)$.

Generalization vs. Approximation vs. Estimation Error

$$\mathcal{L}_{\mathcal{D}}(\mathcal{A}(S)) \leq \inf_{g \in \mathcal{G}} \mathcal{L}_{\mathcal{D}}(g) + 2\sup_{g \in \mathcal{G}} |\mathcal{L}_{S}(g) - \mathcal{L}_{\mathcal{D}}(g)|$$
 Error (expected loss) Error Error

- Approximation Error: Need existence of one good approximator g in model class. Hornik (1991), Shen et al. (2022)
- **Estimation Error:** Control via the **size** of model class, as measured by VC-dimension, Rademacher complexity, metric entropy, etc. *Vapnik & Chervonenkis* (1971), *Bartlett & Mendelson* (2001), *Neyshabur et al.* (2015).

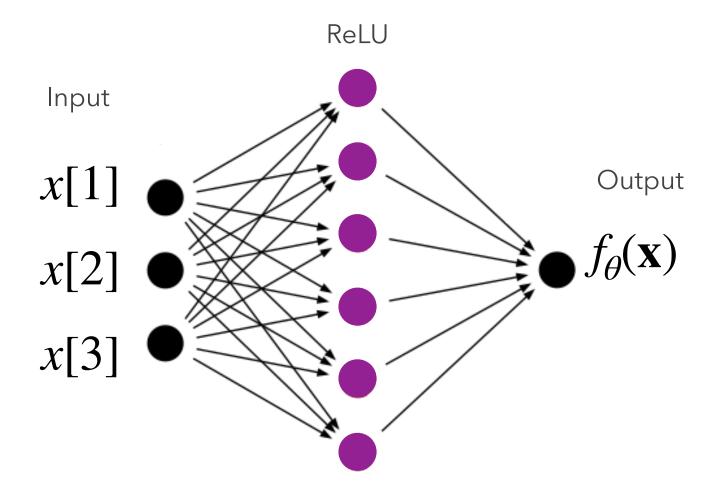
Neural Networks



Are depth-2 or depth-3 neural networks better at learning?

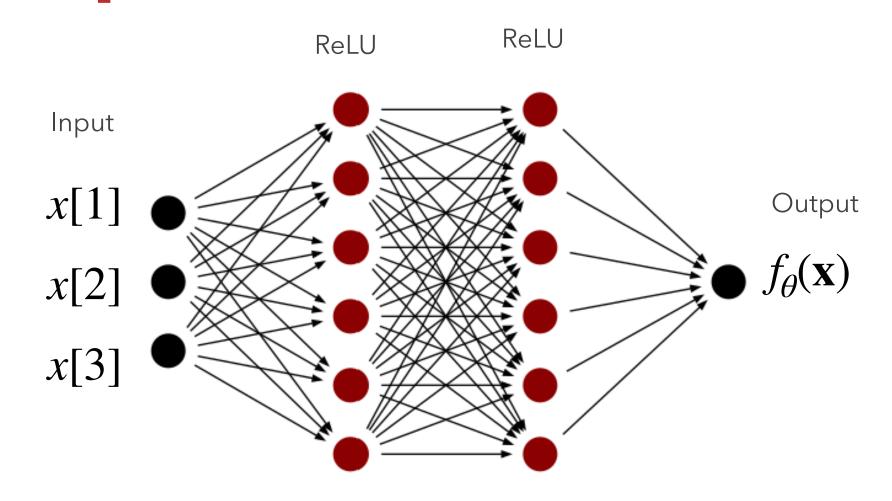
First Pass Intuition

Depth-2 ReLU Network



- Universal approximator of continuous functions with arbitrary width. Hornik (1991)
- Fewer parameters = smaller model class

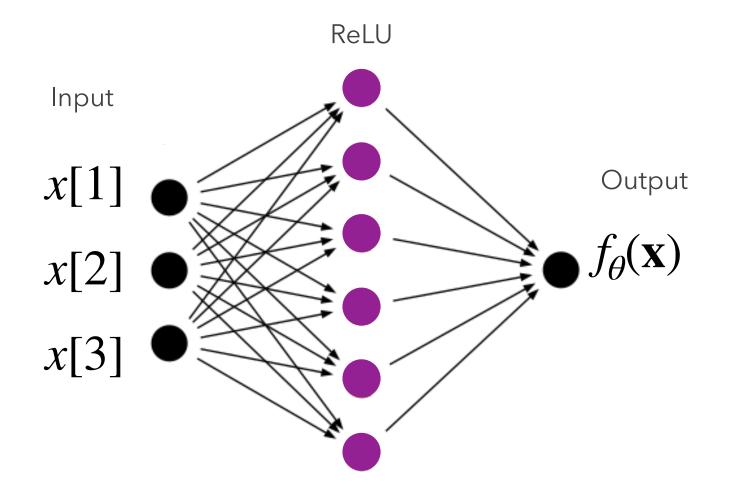
Depth-3 ReLU Network



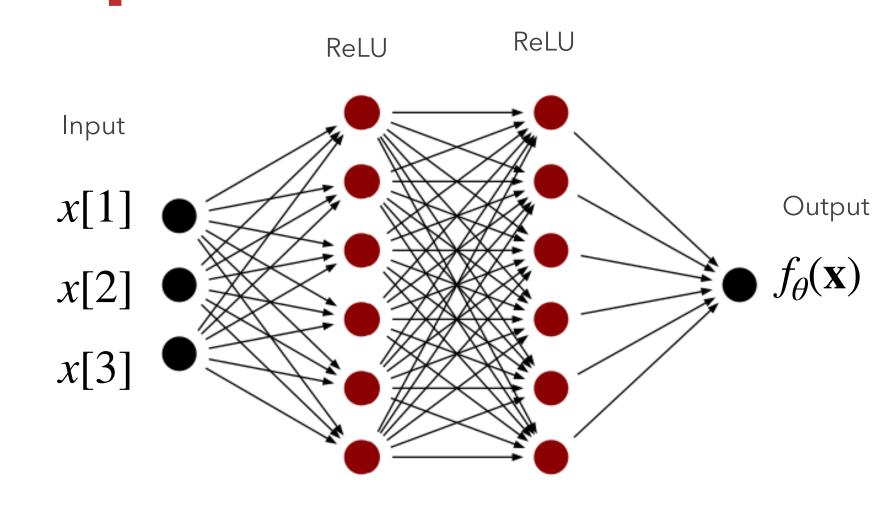
- Universal approximator of continuous functions with arbitrary width. Hornik (1991)
- More parameters = bigger model class

Depth Separation in Width to Approximate

Depth-2 ReLU Network



Depth-3 ReLU Network



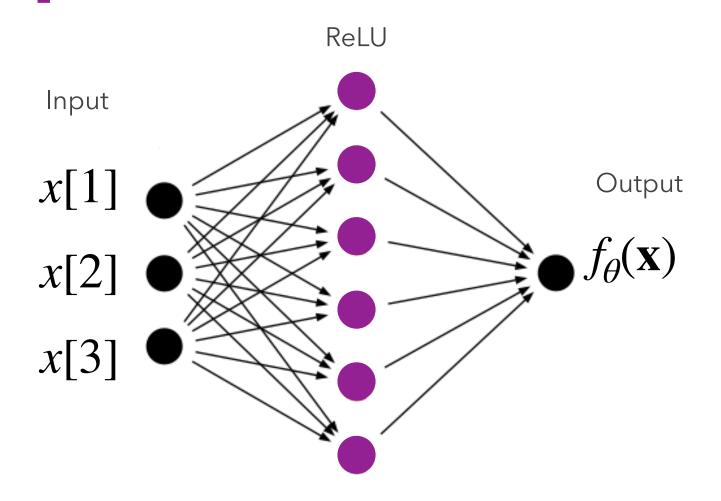
$$\exists f_d : \mathbb{R}^d \to \mathbb{R} \text{ that}...$$

• Requires $\geq 2^d$ width to approximate to within a fixed ε with depth 2

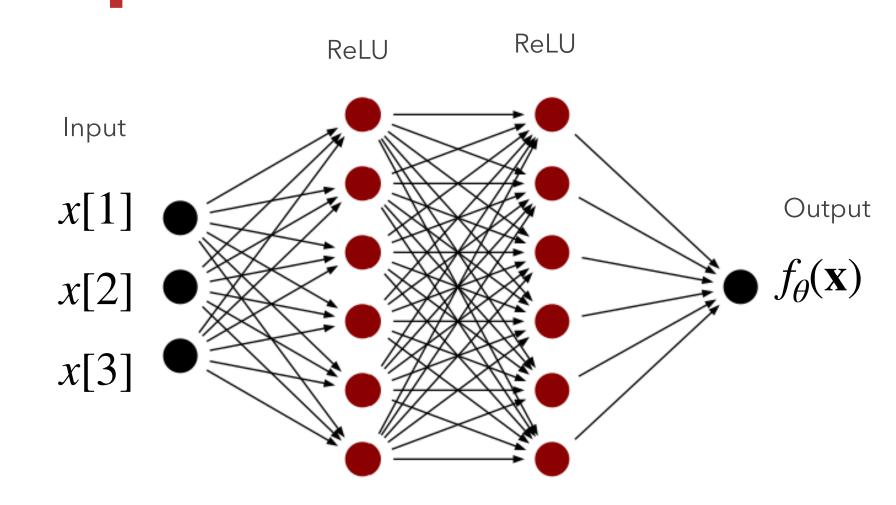
• Approximable with $\operatorname{poly}(d, \varepsilon^{-1})$ width with depth 3

Depth Separation in Learning?

Depth-2 ReLU Network



Depth-3 ReLU Network



 $\exists f_d : \mathbb{R}^d \to \mathbb{R}$ and and distributions $\mathbf{x} \sim \mathcal{D}_d$ on \mathbb{R}^d that...

• Require $2^{\omega(d)}$ samples to learn to within a fixed ε and δ with depth 2

$$\mathscr{A}_{2}^{\lambda}(S) = \arg\min_{g_{\theta} \in \mathscr{N}_{2}} \mathscr{L}_{S}(g_{\theta}) + \lambda C_{2}(\theta)$$

• Only need $\mathbf{poly}(d, \varepsilon^{-1}, \delta^{-1})$ samples to learn with depth 3

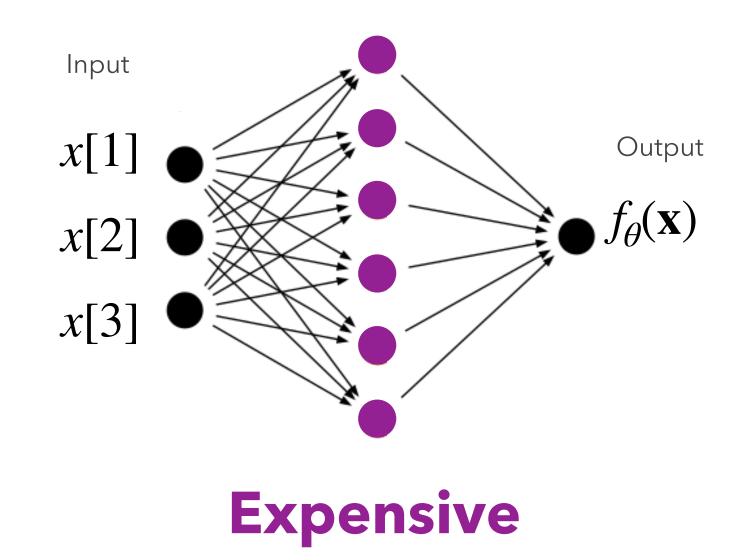
$$\mathscr{A}_3^{\lambda}(S) = \arg\min_{g_{\theta} \in \mathscr{N}_3} \mathscr{L}_S(g_{\theta}) + \lambda C_3(\theta)$$

Depth Separation: $\exists f_d$ that is "hard" with depth 2 but "easy" with depth 3

Key: Choose f_d so that...

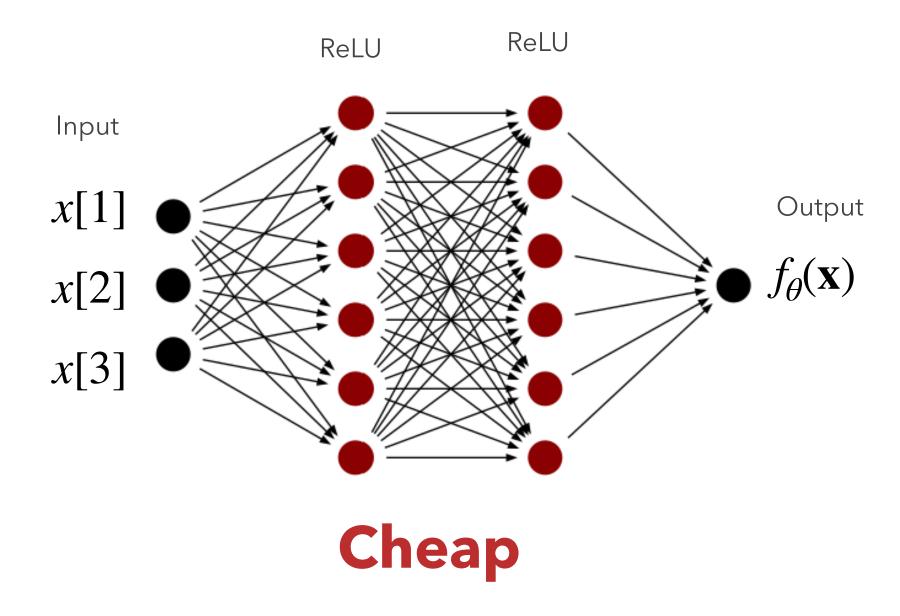
Large norm parameters

to approximate with depth 2



Small norm parameters

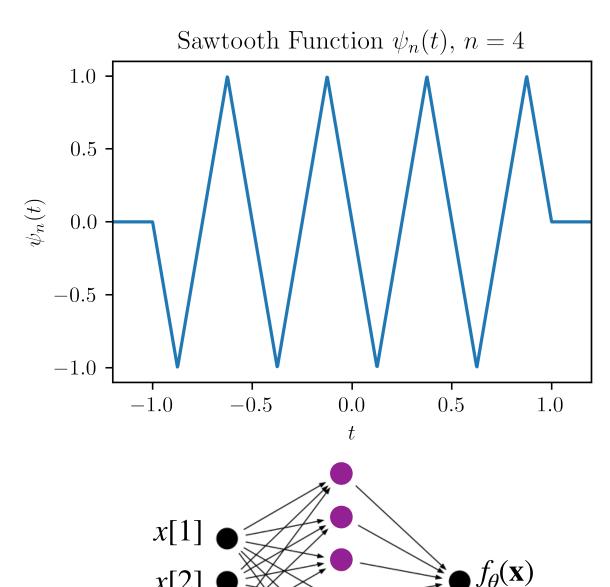
to approximate with depth 3



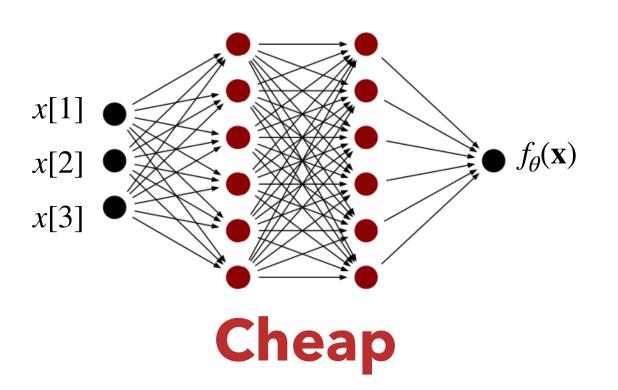
Depth Separation: $\exists f_d$ that is "hard" with depth 2 but "easy" with depth 3

Proof Sketch:

- $\mathbf{x} \sim \text{Unif}(\mathbf{S}^{d-1} \times \mathbf{S}^{d-1})$, $f(\mathbf{x}) = \psi_{3d} \left(\sqrt{d} \langle \mathbf{x}^{(1)}, \mathbf{x}^{(2)} \rangle \right)$ Slight modification of Daniely (2017) construction for separation in width to approximate
- Daniely showed that **depth 2** networks require a large **width** to approximate functions that are compositions of a function that is **very non-polynomial** with an **inner-product**. We show that these functions also require large **norm** of parameters to approximate.
- Naturally approximated by a depth 3 network...
 - The inner product can be approximated with first hidden layer
 - Sawtooth function can be expressed exactly with second hidden layer

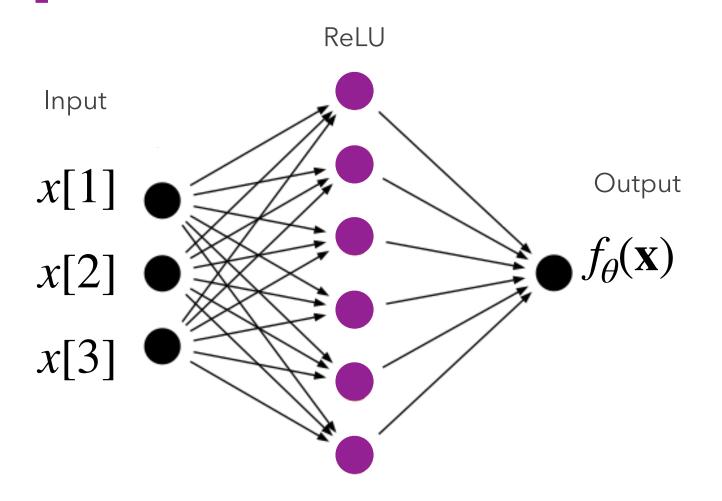


Expensive

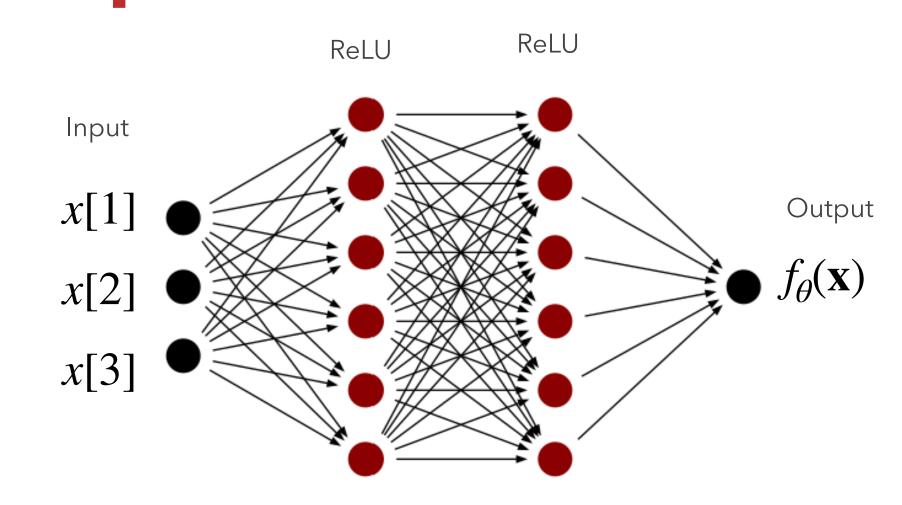


Reverse Depth Separation in Learning?

Depth-2 ReLU Network



Depth-3 ReLU Network



 $\exists f_d : \mathbb{R}^d \to \mathbb{R}$ and and distributions $\mathbf{x} \sim \mathcal{D}_d$ on \mathbb{R}^d that...

• Only need $\mathbf{poly}(d, \varepsilon^{-1}, \delta^{-1})$ samples to learn with depth 2

$$\mathscr{A}_{2}^{\lambda}(S) = \arg\min_{g_{\theta} \in \mathscr{N}_{2}} \mathscr{L}_{S}(g_{\theta}) + \lambda C_{2}(\theta)$$

• Require $2^{\omega(d)}$ samples to learn to within a fixed ε with depth 3

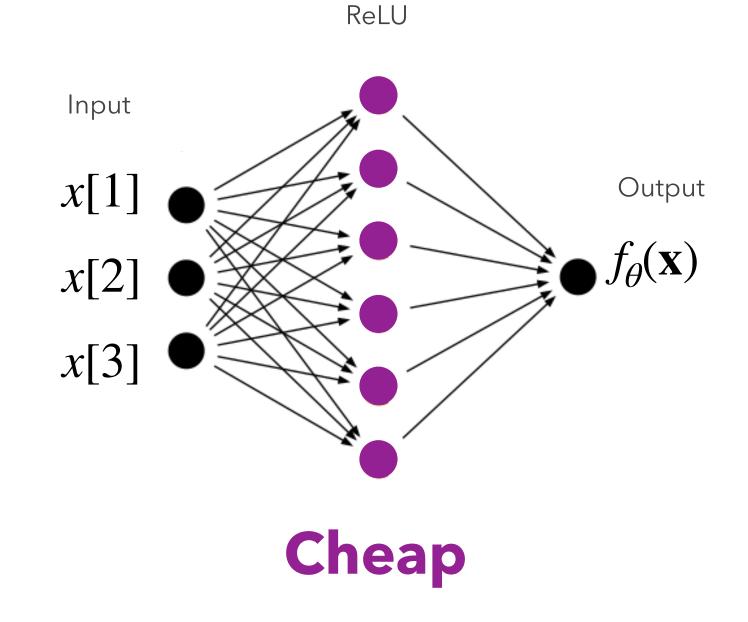
$$\mathscr{A}_{3}^{\lambda}(S) = \arg\min_{g_{\theta} \in \mathscr{N}_{3}} \mathscr{L}_{S}(g_{\theta}) + \lambda C_{3}(\theta)$$

No Reverse Depth Separation: f_d "easy" with depth 2 \Longrightarrow "easy" with depth 3

Key:

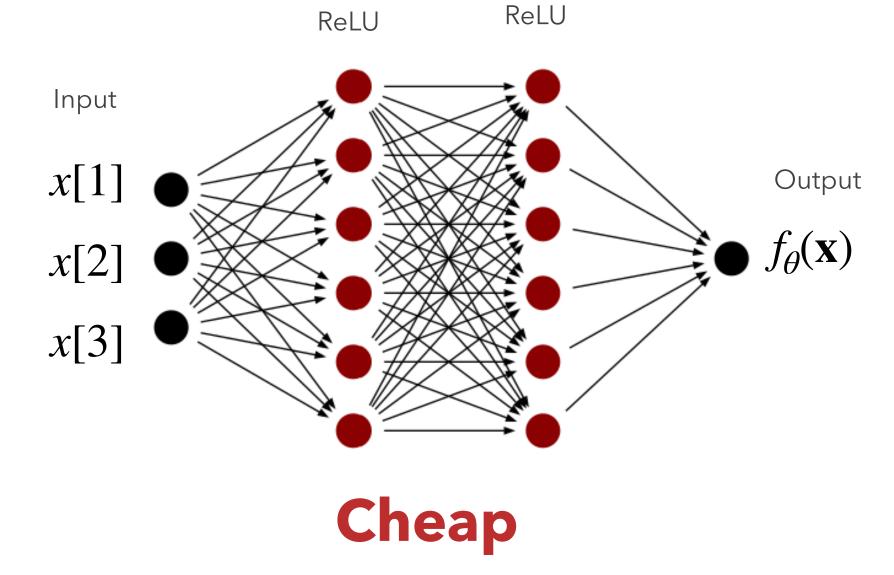
Small norm parameters

to approximate with depth 2



Small norm parameters

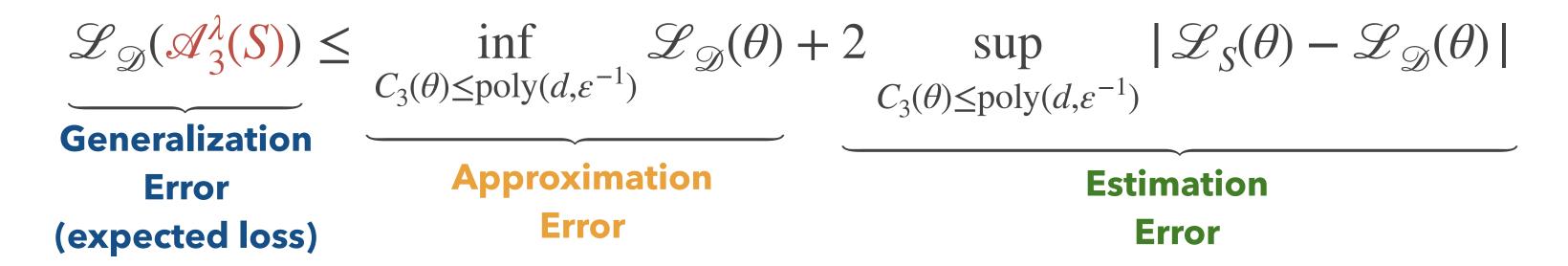
to approximate with depth 3



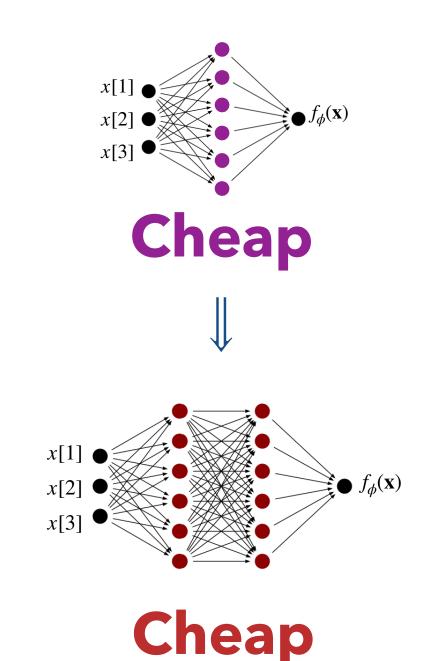
No Reverse Depth Separation: f_d "easy" with depth 2 \Longrightarrow "easy" with depth 3

Proof Sketch:

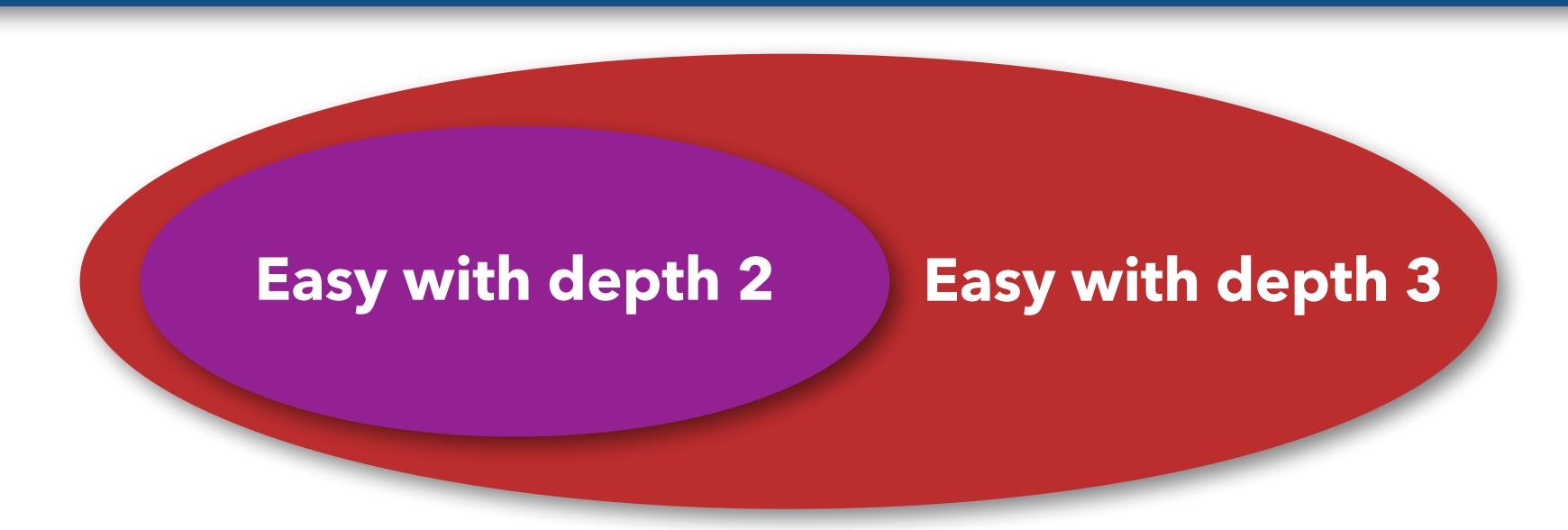
- If $\mathscr{A}_2^{\lambda}(S)$ learns with polynomial sample complexity, $\exists \theta_{\varepsilon}$ of **depth 2** such that $\mathscr{L}_{\mathscr{D}}(\theta_{\varepsilon}) \leq \varepsilon/2$ and $C_2(\theta_{\varepsilon}) \leq \operatorname{poly}(d, \varepsilon^{-1})$.
- $C_3(\theta_{\varepsilon}) = O\left(d + C_2(\theta_{\varepsilon})\right) \le \text{poly}(d, \varepsilon^{-1})$
- If you choose λ in a reasonable way, you get $C_3(\mathscr{A}_3^{\lambda}(S)) \leq C_3(\theta_{\varepsilon}) \leq \operatorname{poly}(d, \varepsilon^{-1})$



• Therefore, via Rademacher complexity analysis, $\mathcal{L}_{\mathcal{D}}(\mathcal{A}_3^{\lambda}(S)) \leq \varepsilon$ with high probability as long as $|S| = \text{poly}(d, \varepsilon^{-1})\log(1/\delta)$.



Functions that are "easy" to learn with depth 2 networks form a strict subset of functions that are "easy" to learn with depth 3 networks.

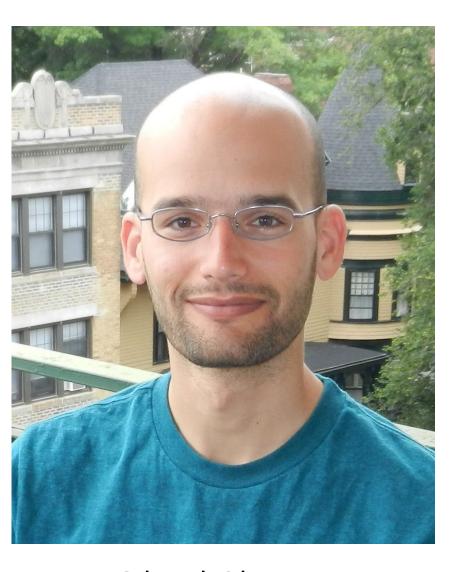


We've assumed that we're (nearly) minimizing our objective. How does the loss-landscape affect learning at different depths?

Thank you!

Greg Ongie Marquette University

Rebecca Willett
University of
Chicago



Ohad Shamir Weizmann Institute of Science

Nati Srebro
Toyota Technical
Institute at Chicago

I will be on the job market for a postdoc this year