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Set-Up

Every shallow neural network f can be described by a collection of weights
θ = (W , a, b, c):

h
(2)
θ (x) = a>[W x + b]+ + c =

K∑
k=1

ak[w>
k x + bk]+ + c. (1)

Adding linear layers effectively re-parameterizes f :

h
(L)
θ (x) = a>[WL−1 · · · W2W1x + b]+ + c (2)

where now θ = (W1, W2, ..., WL−1, a, b, c). With any θ we associate the
cost

CL(θ) := 1
L

(
‖a‖2

2 + ‖W1‖2
F + · · · + ‖WL−1‖2

F

)
, (3)

i.e., the “weight decay” penalty on non-bias terms. We recast this cost in

function space:
RL(f ) := inf

θ
CL(θ) s.t. f = h

(L)
θ . (4)

This is the function-space penalty equivalent of the weight decay penalty

for interpolation learning or regularized empirical risk minimization.

Figure 1. As the number of linear layers increases from left to right, the learned

interpolating function will become closer to constant in directions perpendicular to a

low-dimensional subspace on which a parsimonious interpolant can be defined.

Definitions

Fix a bounded density ρ such that ρ(x) > 0 for all x ∈ Rd and consider the

uncentered covariance matrix of the gradient of a function:

Cf,ρ := Eρ[∇f (x)∇f (x)>] =
∫

∇f (x)∇f (x)>ρ(x) dx (5)

The function f is constant in the direction of v ∈ null(Cf,ρ) because

‖v>∇f‖2
L2(ρ) = v>Cf,ρv ∀v.

The active subspace of a function f is range(Cf,ρ).
The rank of a function is rank(f ) = rank(Cf,ρ).
If f is a multi-index model of the form f (x) = g(V >x) then

Cf,ρ = V
[
Eρ[∇g(V >x)∇g(V >x)>]

]
V >.

Definitions (cont.)

Let σk(f ; ρ) := σk(C1/2
f,ρ )

Define the mixed variation of order q ∈ (0, 1] of f with respect to ρ as

MV (f ; ρ, q) := ‖C
1/2
f,ρ ‖Sq =

 d∑
k=1

σk(f ; ρ)q
1/q

.

Figure 2. Illustration of four functions in d = 2 with mixed variation decreasing from left

to right.

Lemma

R2(f )2/L ≤ RL(f ) ≤ rank(f )
L−2

L R2(f )2/L (6)

MV
(

f ; ρ,
2

L − 1

)
≤ RL(f )L/2 (7)

Theorem

For all fl, fh ∈ N2(Rd) such that rank(fl) < rank(fh), there is a value L0 such
that L > L0 implies RL(fl) < RL(fh).

Theorem

For all constants C ≥ 1, η > 0 and all integers s ≥ 1 and k ≥ 0 such that

s + k ≤ d, if

1
n

n∑
i=1

(yi − f̂ (xi))2 +ηRL(f̂ ) ≤ C

 inf
f∈N2(Rd)

1
n

n∑
i=1

(yi − f (xi))2 + ηRL(f )


or f̂ (xi) = yi and

RL(f̂ ) ≤ C

(
inf

f∈N2(Rd):f (xi)=yi

RL(f )

)
then

σs+k(f̂ ; ρ) = O

(( s

s + k

)(L−1)/2
CL/2

)
.

Numerical Experiments

To see how adding linear layers affects performance in practice, we per-

formed numerical experiments with and without adding linear layers. All

models are of the form (2) with varying values of L.

For r = 1, 2, Ground Truth fr(x) = a>
r [Wrx + br]+ is a rank-r function

with active subspace range(V ).
Train and Test Samples are generated as

{(xi, fr(xi))}i=1, xi ∼ U([−1
2, 1

2]20)
Train from random initialization using Adam with weight decay

parameter λ = 10−3

Estimate C
f̂ ,ρ
and Active Subspace Basis V̂r of f̂ and report subspace

distance ‖V̂rV̂ >
r − V V >‖op.

Figure 3. Adding linear layers causes learned networks to have low effective rank.

Singular values of trained networks with L = 2 (left, no linear layers) vs. L = 4 (right, two
linear layers). The singular values of the L = 4 networks exhibit a sharp dropoff.

Train Generalization Out of Distribution Active Subspace

r n L MSE MSE MSE Distance

1 64 2 3.38e-06 1.24e-01 1.09e+00 3.95e-02

4 8.19e-05 8.86e-04 5.39e-03 2.48e-03

2 64 2 2.69e-07 1.04e+01 4.23e+01 7.59e-01

4 4.95e-07 1.25e+01 5.02e+01 9.57e-01

2 128 2 7.78e-05 5.97e+00 2.68e+01 4.97e-01

4 1.74e-05 8.04e+00 3.92e+01 5.88e-01

2 256 2 4.36e-04 4.05e+00 1.87e+01 2.73e-01

4 9.97e-04 2.35e-02 2.39e-01 1.10e-02

Table 1.With enough data, adding linear layers improves generalization and aligns

models with the true active subspace.
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