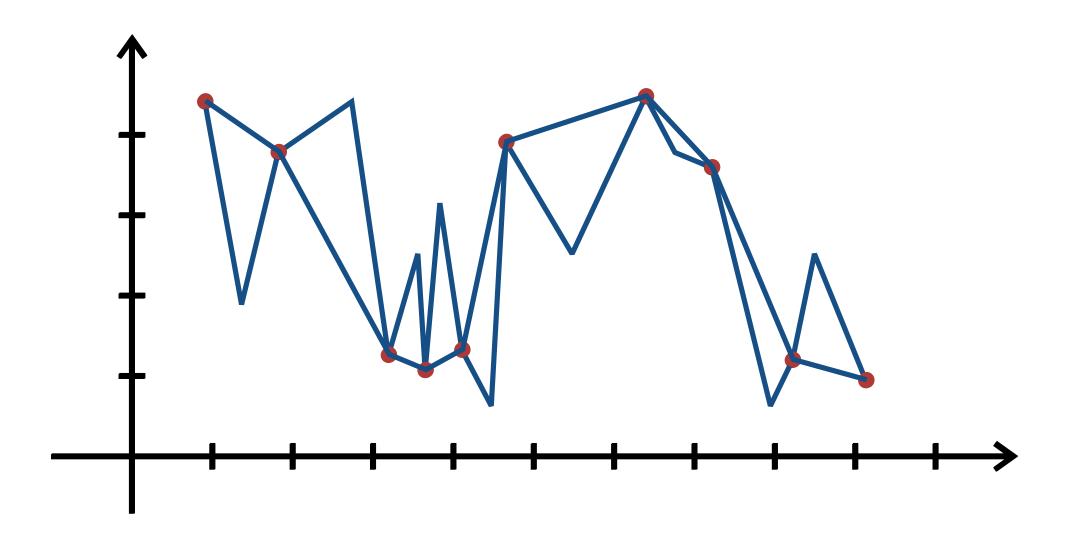
Linear Layers in ReLU Networks Promote Learning Single-/MultipleIndex Models

Suzanna Parkinson University of Chicago

October 21, 2024 SIAM MDS 2024

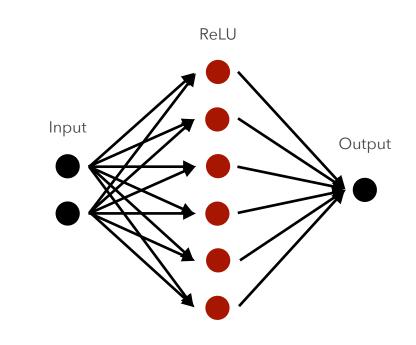
Motivation: Regularization in 1D Shallow ReLU Networks

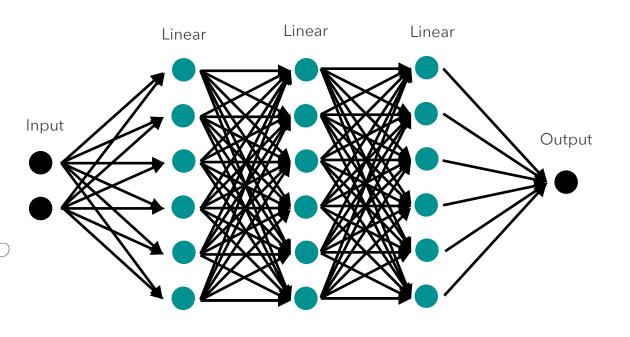


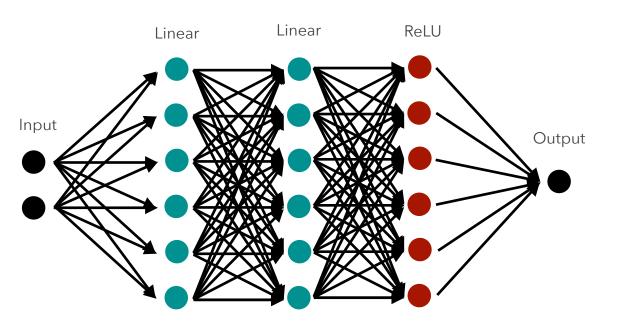
- Both functions...
 - Can be expressed as a **shallow ReLU** neural network
 - Interpolate the data
 - Generalize differently
- What functions are preferred by explicitly regularized neural networks?
- How do preferred functions change with network architecture?

Effect of weight decay regularization in neural networks

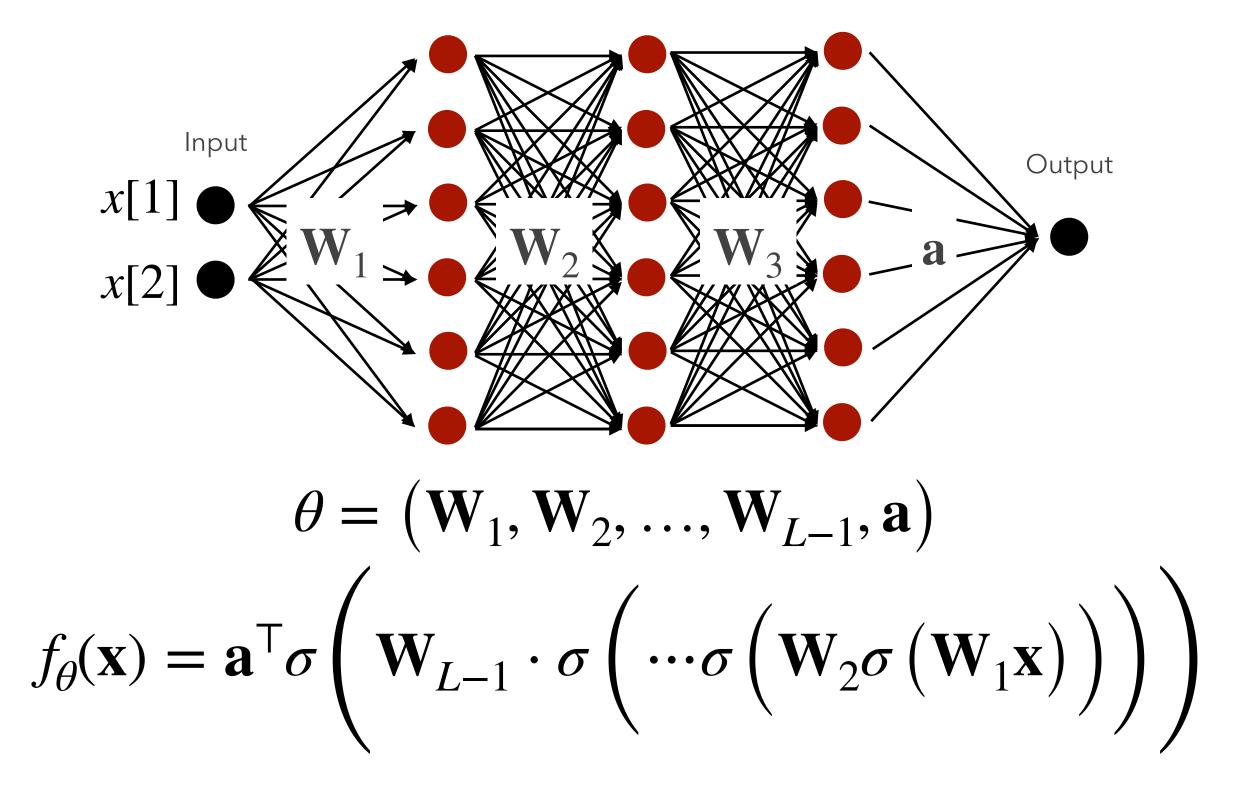
- 2-layer ReLU networks Bach (2017)
 - For $x \in \mathbb{R}$, prefer functions for which $\int |f''(x)| dx$ is small Savarese et al. (2019), Joshi, Vadi, & Srebro (2023), Boursier & Flammarion (2023)
 - For $x \in \mathbb{R}^d$, prefer functions for which $\|\mathscr{R}(-\Delta)^{(d+1)/2}f\|_{\mathrm{TV}}$ is small ongle et al. (2019)
 - Banach space representer theorems & minimax rates Parhi & Nowak (2021), Bartolucci et al. (2023), Unser (2023)
- Multi-layer linear networks
 - Gradient descent "aligns" layers Ji & Telgarsky (2018)
 - Depth induces ℓ^q and group norms depending on architecture Dai, Karzand, & Srebro (2021)
 - Depth promotes sparsity and low rank Chou, Many, Rauhut (2011-2023)
- Multi-layer nonlinear networks
 - Insights for rank-1 or orthonormal training data Ergen & Pilanci (2021)
 - Insights for low-rank vector-valued networks Jacot (2023, 2024)
 - This work







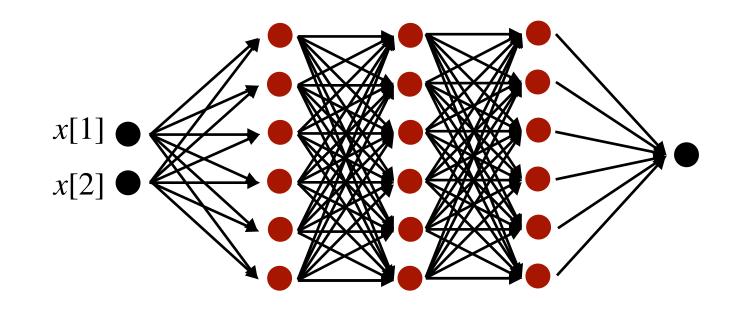
Neural Networks



Function Space Perspective

Parameter Space Cost

$$\hat{\theta}_S \in \arg\min_{\theta} \ \mathcal{L}_S(f_{\theta}) + \lambda C_L(\theta) \text{ where } C_L(\theta) = \frac{1}{L} \left(\sum_{\ell=1}^{L-1} \|\mathbf{W}_{\ell}\|_F^2 + \|\mathbf{a}\|_2^2 \right) \qquad \sum_{x[2]} \mathbf{w}_{\ell}^{x[1]} \mathbf{w}_{\ell}^{x[2]} \mathbf{w}_{\ell}^{$$



$$\hat{f}_S \in \arg\min_{g \in \mathcal{N}_L} \mathscr{L}_S(g) + \lambda R_L(g) \text{ where } R_L(g) = \inf_{\theta} C_L(\theta) \text{ s.t. } f_{\theta} = g$$

Representation Cost

What kinds of functions have small representation cost?

How does the representation cost depend on network architecture, including **depth**?

Linear layers in ReLU NNs promotes learning single-/multi-index models

Linear layers in ReLU networks

2-layer ReLU network:

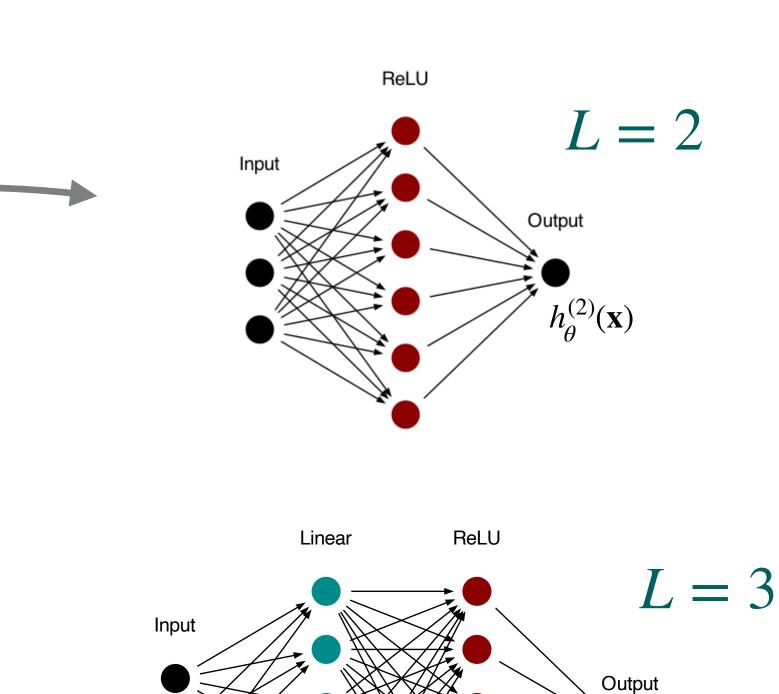
$$h_{\theta}^{(2)}(\mathbf{x}) = \sum_{k=1}^{K} a_k [\mathbf{w}_k^{\mathsf{T}} \mathbf{x} + b_k]_+ + c$$
$$= \mathbf{a}^{\mathsf{T}} [\mathbf{W} \mathbf{x} + \mathbf{b}]_+ + c$$

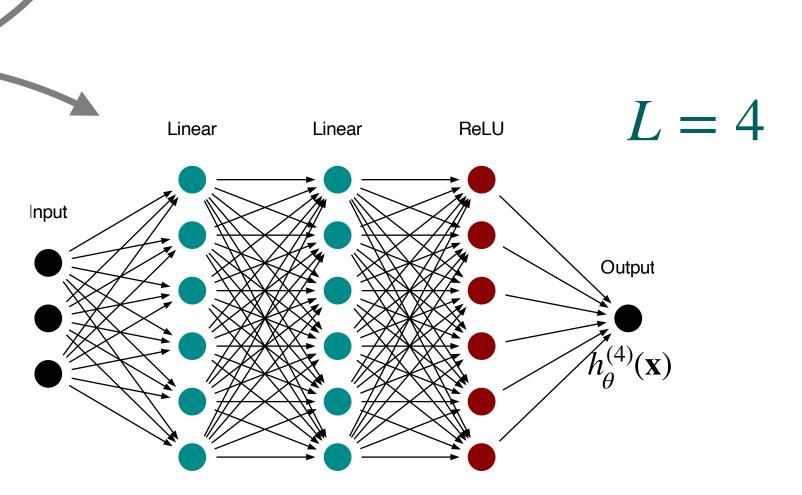
where $\theta = (\mathbf{W}, \mathbf{a}, \mathbf{b}, c)$

Our focus: networks with L layers in which L-1 layers have linear activations followed by a ReLU activation:

$$h_{\theta}^{(L)}(\mathbf{x}) = \mathbf{a}^{\mathsf{T}}[\mathbf{W}_{L-1} \cdots \mathbf{W}_2 \mathbf{W}_1 \mathbf{x} + \mathbf{b}]_+ + c$$

where $\theta = (\mathbf{W}_{L-1}, ..., \mathbf{W}_2, \mathbf{W}_1, \mathbf{a}, \mathbf{b}, c)$

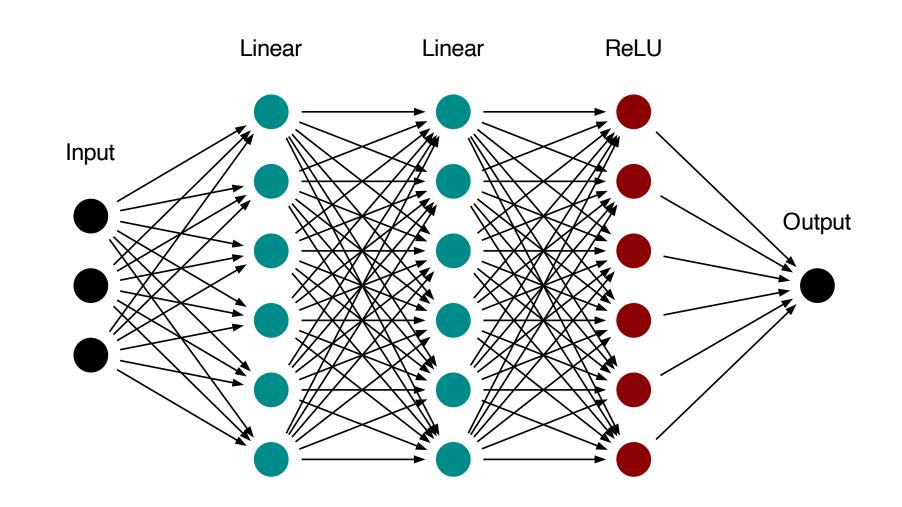




 $h_{\theta}^{(3)}(\mathbf{x})$

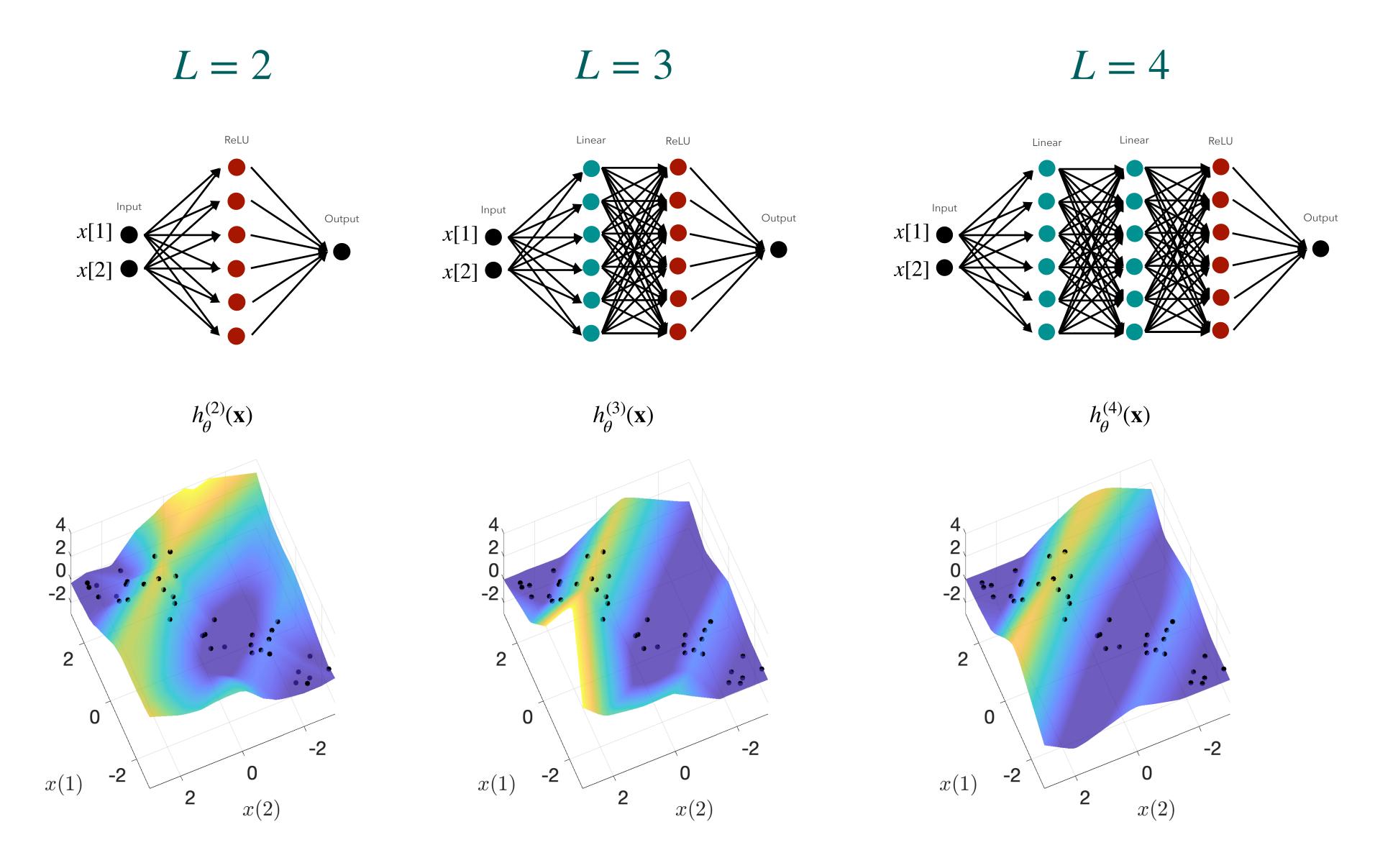
Why care about linear layers?

• The capacity or expressivity of the network is the same regardless of L – that is, **different behaviors** for different depths solely are independent of capacity. That is, $h_{\theta}^{(L)}(\mathbf{x}) = \mathbf{a}^{\mathsf{T}}[\mathbf{W}\mathbf{x} - \mathbf{b}]_{+} + c$ for some (\mathbf{W}, \mathbf{a}) for each L.



- Empirically, linear layers...
 - Help with generalization Golubeva et al. (2020)
 - Uncover low rank structure Kodak et al. (2020), Zeng and Graham (2023)
 - Improve training speed Ba and Caruana (2013); Urban et al. (2016); Arora et al. (2018)

First pass intuition



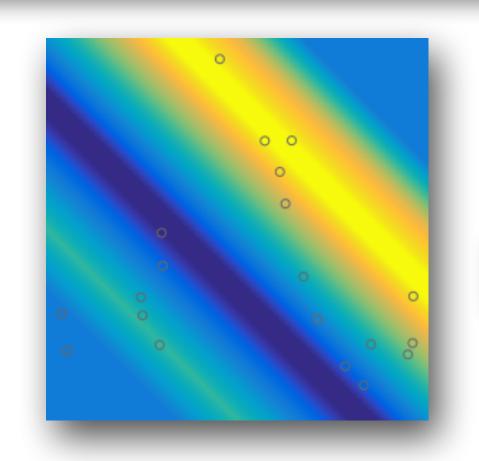
Single-Index Models

Definition: A single-index model is a function

 $f: \mathbb{R}^d \mapsto \mathbb{R}$ of the form

$$f(\mathbf{x}) = g(\mathbf{v}^\mathsf{T}\mathbf{x}),$$

for some link function $g : \mathbb{R} \to \mathbb{R}$, where $\mathbf{v} \in \mathbb{R}^d$ and range(\mathbf{v}) is called the **central subspace**.



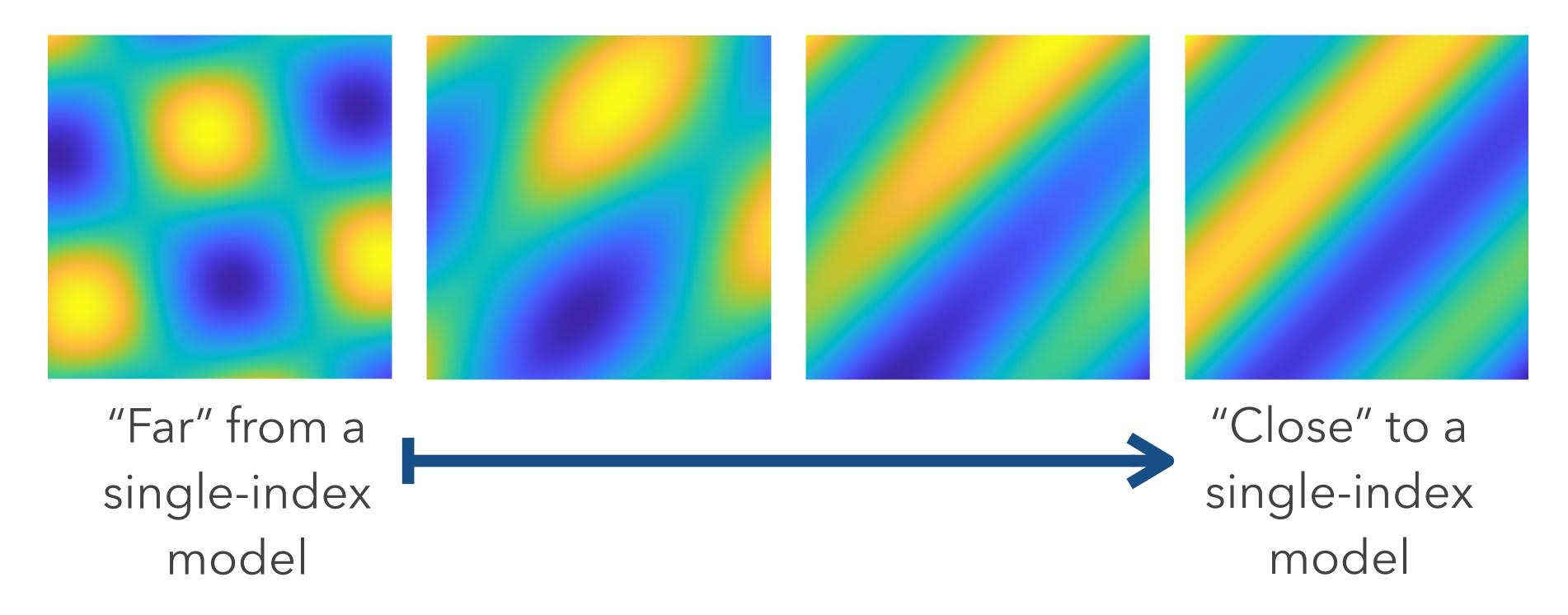
single-index model in d=2

Multi-Index Models

Definition: More generally, a **multi-index model** is a function $f: \mathbb{R}^d \mapsto \mathbb{R}$ of the form $f(\mathbf{x}) = g(\mathbf{V}^\mathsf{T}\mathbf{x})$,

for some link function $g: \mathbb{R}^r \mapsto \mathbb{R}$, where $V \in \mathbb{R}^{d \times r}$ and range(V) is called the **central subspace**.

None of these functions are single-index models



Functions may be "close" to a single-index model when they vary significantly more in one direction than another

Expected Gradient Outer Product (EGOP) Matrix

Definition: Consider the expected gradient outer product matrix of a function $f: \mathcal{X} \mapsto \mathbb{R}$:

$$C_f := \mathbb{E}_X[\nabla f(X) \nabla f(X)^{\mathsf{T}}].$$

The principal subspace of f is range(C_f). The index rank of f is

$$rank_I(f) := rank(C_f).$$

$$\mathbf{v}^{\mathsf{T}} C_f \mathbf{v} = \mathbf{E}_X \left[(\mathbf{v}^{\mathsf{T}} \nabla f(X))^2 \right]$$

Index rank = 1

Mixed variation functions and effective index rank

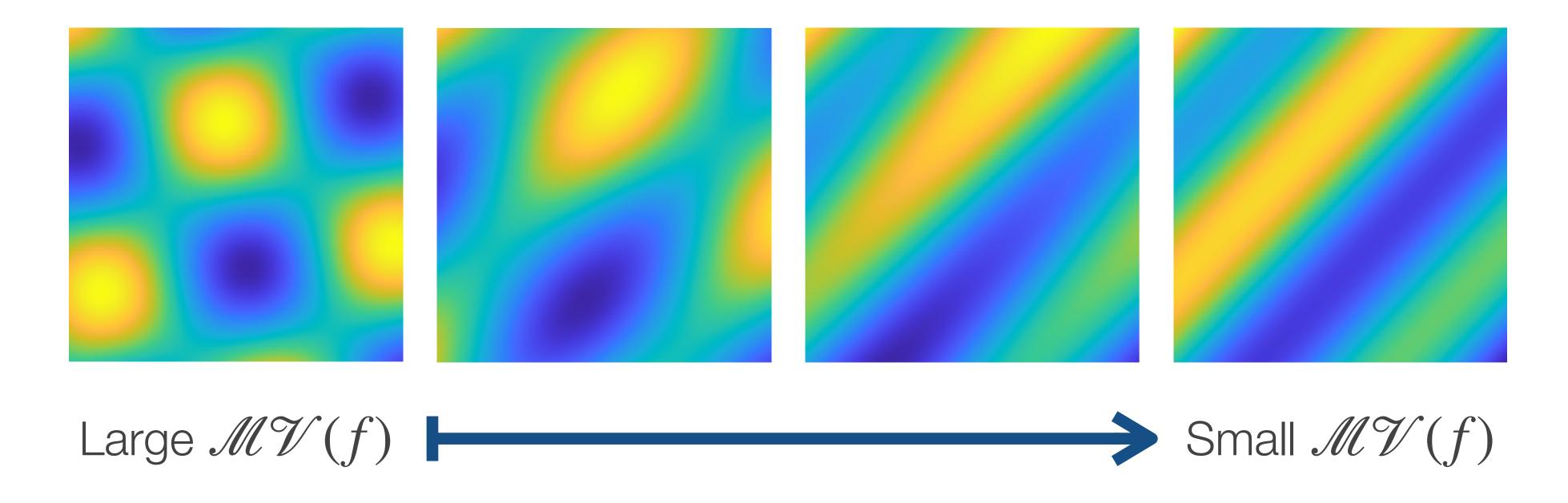
Definition: Given a function $f: \mathcal{X} \mapsto \mathbb{R}$ and $q \in (0,1]$, the **mixed variation** of f of order q is

$$\mathscr{MV}(f;q) := \|C_f^{1/2}\|_{\mathscr{S}^q}.$$

Definition: Given a function f and $\varepsilon > 0$, define the **effective index rank** $rank_{I,\varepsilon}(f)$

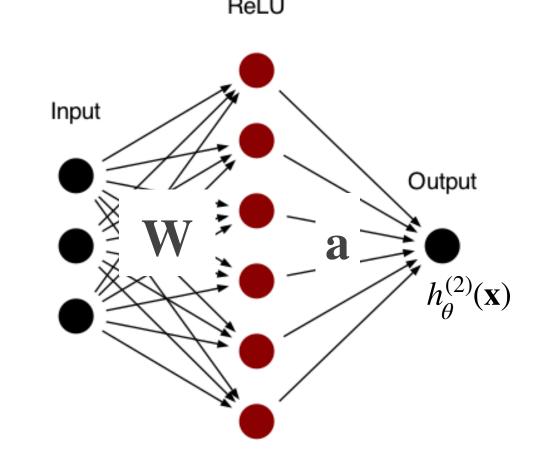
to be the number of singular values of $C_f^{1/2}$ that are bigger than arepsilon.

None of these functions are single-index models



Functions with small mixed-variation are "close" to having small index rank and can vary significantly more in one direction than another

Two-Layer Network

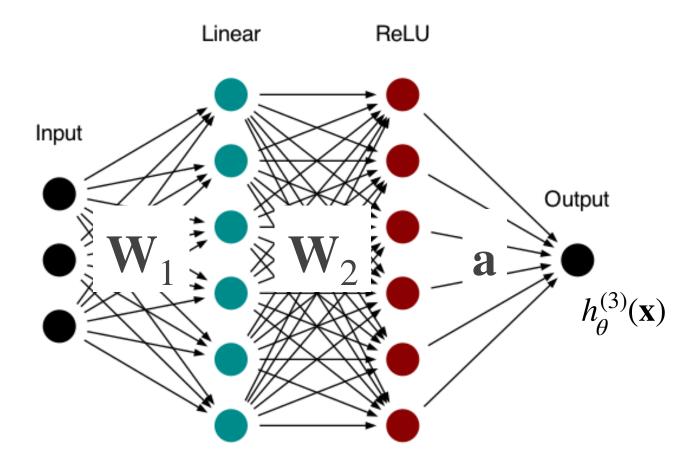


$$h_{\theta}^{(2)}(\mathbf{x}) = \mathbf{a}^{\mathsf{T}}[\mathbf{W}\mathbf{x} + \mathbf{b}]_{+} + c$$

$$C_2(\theta) = \frac{1}{2} \|\mathbf{a}\|_2^2 + \frac{1}{2} \|\mathbf{W}\|_F^2$$

$$R_2(f) = \min_{\theta} \frac{1}{2} ||\mathbf{a}||_2^2 + \frac{1}{2} ||\mathbf{W}||_F^2 \quad \text{s.t.} \quad f = h_{\theta}^{(2)}$$

Three-Layer Network



$$h_{\theta}^{(3)}(\mathbf{x}) = \mathbf{a}^{\mathsf{T}}[\mathbf{W}\mathbf{x} + \mathbf{b}]_{+} + c$$

where $\mathbf{W} = \mathbf{W}_{2}\mathbf{W}_{1}$

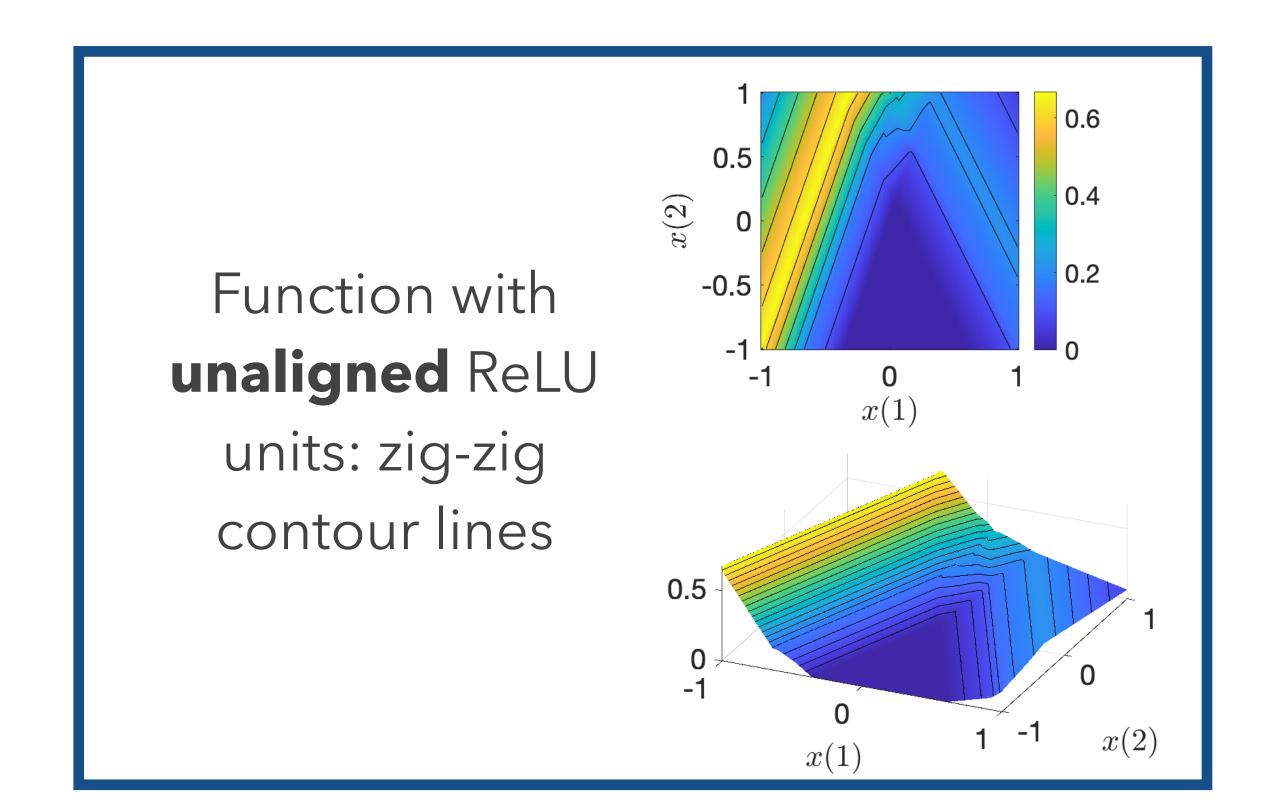
$$C_3(\theta) = \frac{1}{3} \|\mathbf{a}\|_2^2 + \frac{1}{3} \|\mathbf{W}_1\|_F^2 + \frac{1}{3} \|\mathbf{W}_2\|_F^2$$

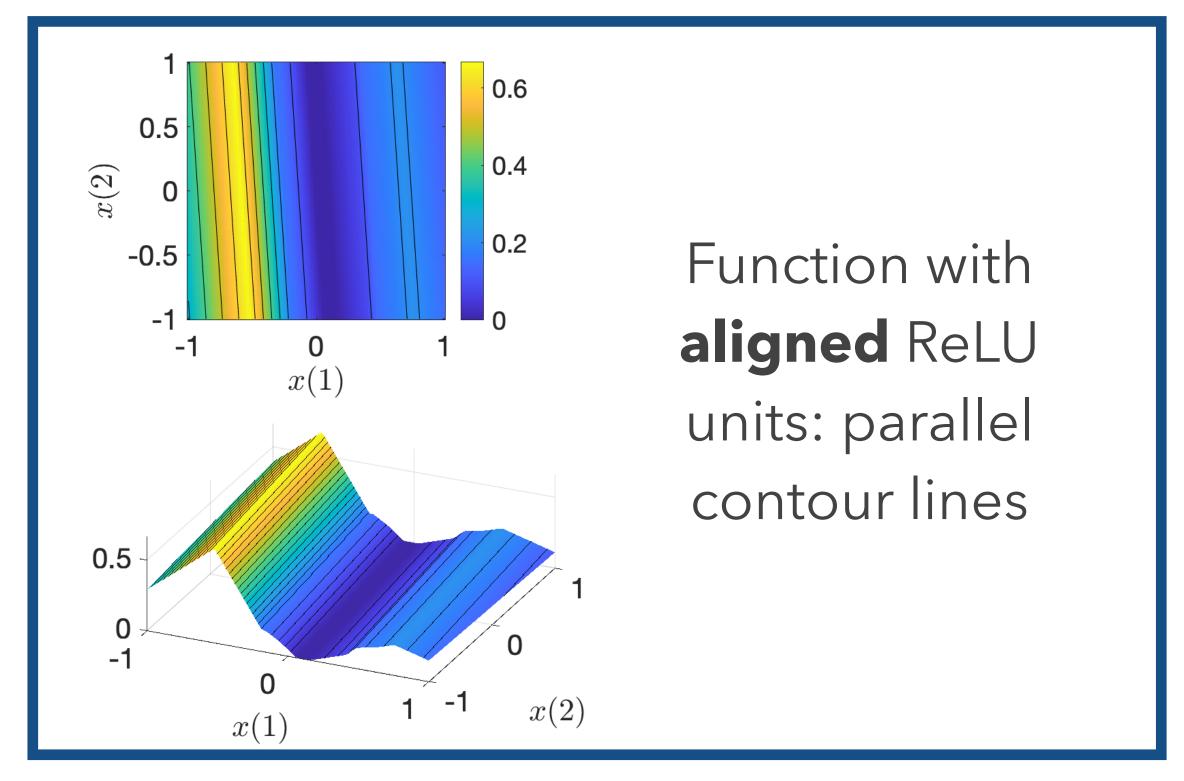
$$R_3(f) = \min_{\theta} \frac{1}{3} \|\mathbf{a}\|_2^2 + \frac{2}{3} \|\mathbf{W}\|_F^2 + \frac{1}{3} \|\mathbf{W}_f\|_F^2 + \frac{1}{3} \|\mathbf{W}_f\|_F^2 h_{\theta}^{(3)}. \quad f = h_{\theta}^{(3)}$$

$$\min_{\mathbf{W}_1 \mathbf{W}_2 = \mathbf{W}} \frac{1}{2} ||\mathbf{W}_1||_F^2 + \frac{1}{2} ||\mathbf{W}_2||_F^2 = ||\mathbf{W}||_*$$

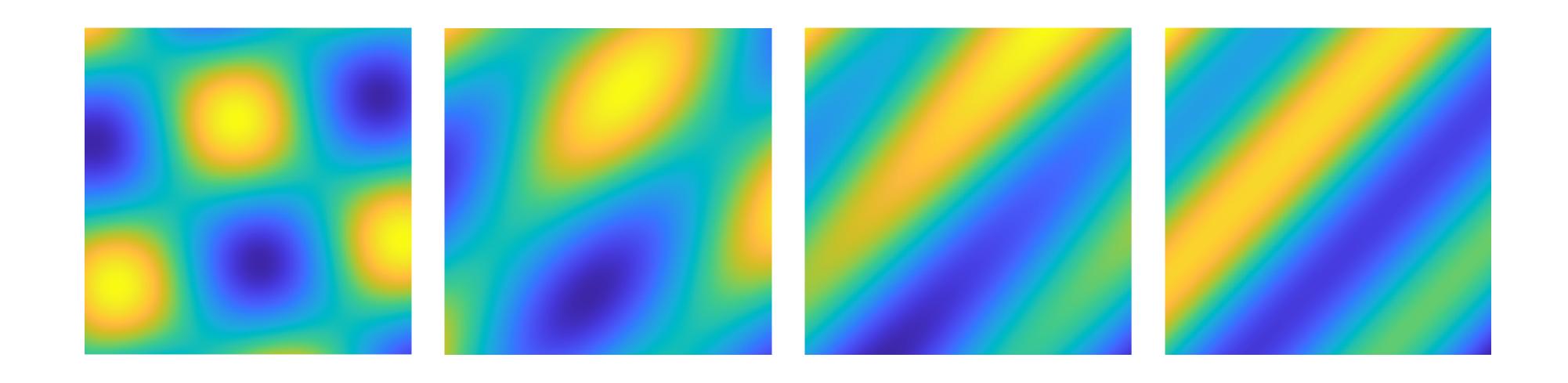
$$R_{L}(f) = \min_{\theta} \frac{1}{L} \|\mathbf{a}\|_{2}^{2} + \frac{L-1}{L} \|\mathbf{W}\|_{\mathcal{S}^{q}}^{q} \quad \text{s.t.} \quad f = h_{\theta}^{(2)}$$
 where $q = \frac{2}{L-1}$

$$\begin{split} R_L(f) &= \min_{\theta} \frac{1}{L} \|\mathbf{a}\|_2^2 + \frac{L-1}{L} \|\mathbf{W}\|_{\mathcal{S}^q}^q \quad \text{s.t.} \quad f = h_{\theta}^{(2)} \\ \text{where} \ q &= \frac{2}{L-1} \end{split}$$





Minimizing the R_L -cost promotes learning functions that have small **mixed variation**, such as **single- and multi- index models**



Mixed Variation, Index Rank, and the Representation Cost

Theorem:

$$\max\left(\mathcal{MV}(f;\frac{2}{L-1})^{2/L},R_{2}(f)^{2/L}\right)\leq R_{L}(f)\leq rank_{I}(f)^{\frac{L-2}{L}}R_{2}(f)^{2/L}$$

Minimizing the R_L -cost favors functions that vary primarily along a **low-dimensional subspace**, and are **smooth** along that subspace.

Mixed Variation, Index Rank, and the Representation Cost

Theorem:

$$\max\left(\mathcal{MV}(f;\frac{2}{L-1})^{2/L},R_{2}(f)^{2/L}\right)\leq R_{L}(f)\leq rank_{I}(f)^{\frac{L-2}{L}}R_{2}(f)^{2/L}$$

Corollary:

$$\lim_{L \to \infty} R_L(f) = \operatorname{rank}(f)$$

Corollary: If f_{ℓ}, f_h are such that $\operatorname{rank}_I(f_{\ell}) < \operatorname{rank}_I(f_h)$, then for L sufficiently large,

$$R_L(f_{\ell}) < R_L(f_h).$$

Minimal-norm interpolants are nearly low index rank

Theorem: Any interpolant \hat{f}_L of a dataset ${\mathscr D}$ that has minimal R_L cost has effective index rank bounded as

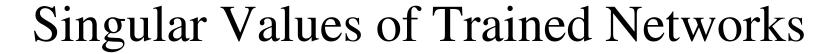
$$rank_{I,\varepsilon}(\hat{f}_L) \leq \min_{s \in [d]} s \left(\frac{\mathcal{F}_s(\mathcal{D})}{\varepsilon \sqrt{s}}\right)^{\frac{2}{L-1}}$$

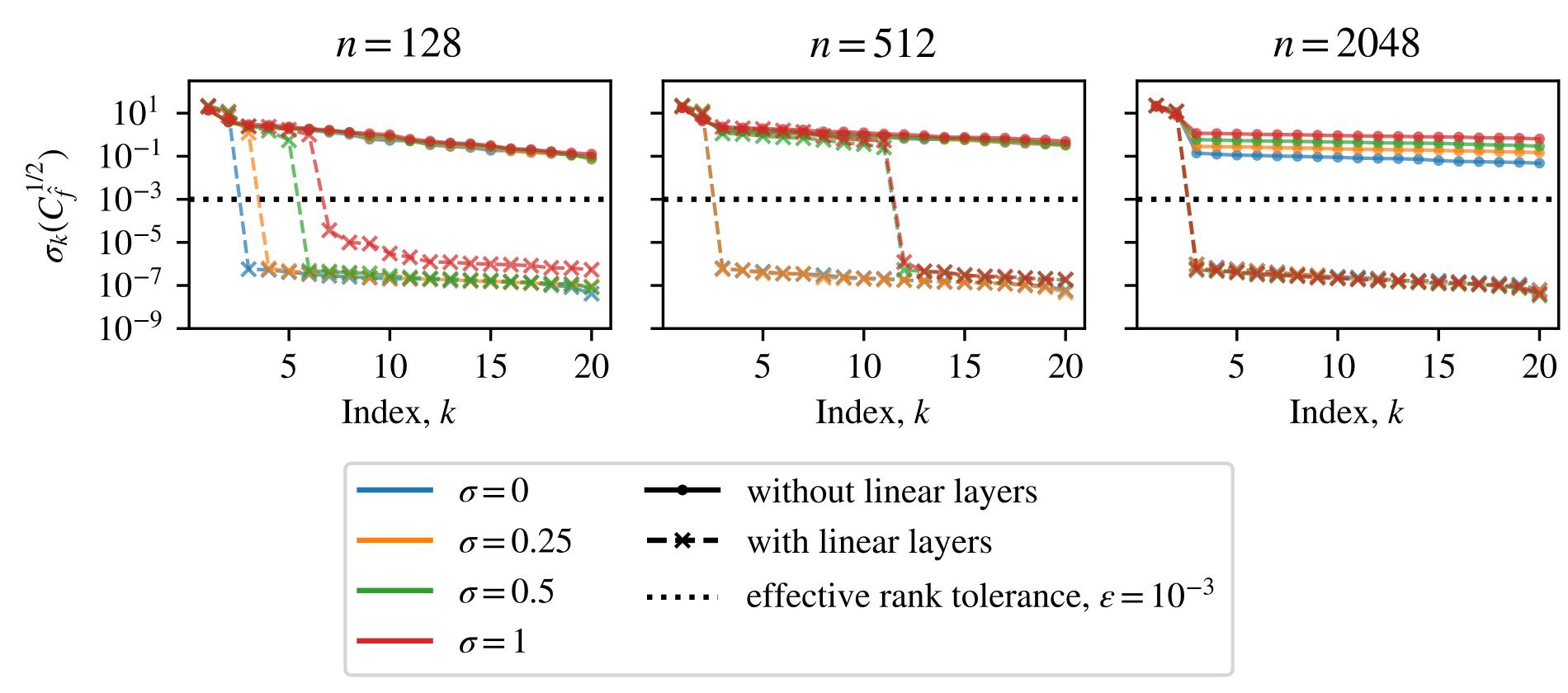
where $\mathcal{F}_s(\mathcal{D})$ denotes the R_2 cost needed to interpolate \mathcal{D} with a function of index rank < s.

Corollary: Suppose that a dataset \mathscr{D} is generated by a function f^* with $\operatorname{rank}_I(f^*) = r$

and bounded
$$R_2$$
 cost. Then If $R_2(f^*) . Then $\mathrm{rank}_{I,arepsilon}(\hat{f}_L)\leq r$.$

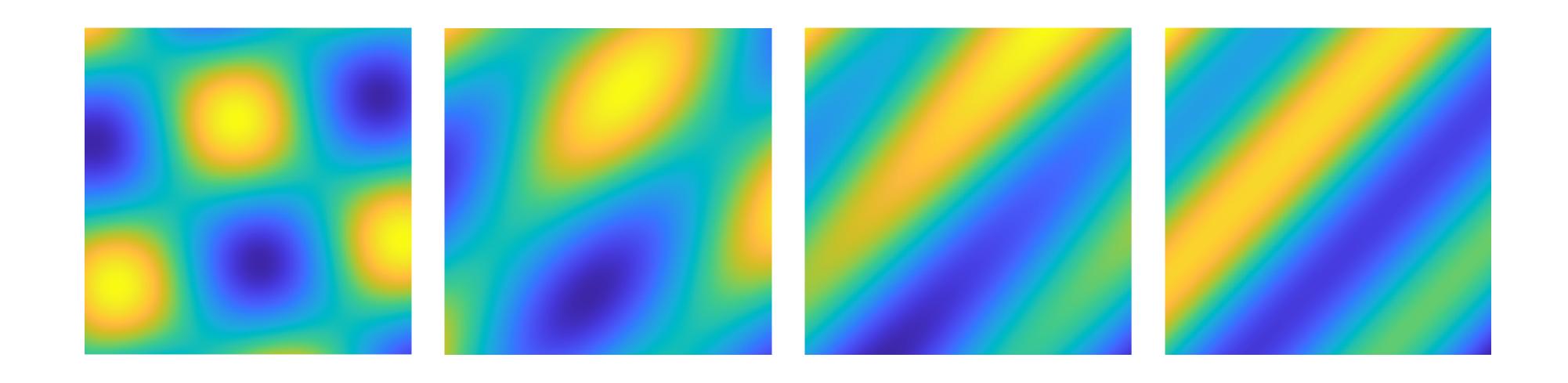
Numerical Example





Adding linear layers causes trained networks to have low effective index rank.

Minimizing the R_L -cost promotes learning functions that have small **mixed variation**, such as **single- and multi- index models**



Thank you!

Greg Ongie

Rebecca Willett