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Motivation: Regularization in 1D Shallow ReLU Networks

• Both functions… 
• Can be expressed as a shallow ReLU neural network 
• Interpolate the data 
• Generalize differently 

• What functions are preferred by explicitly regularized neural networks? 
• How do preferred functions change with network architecture?
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• 2-layer ReLU networks Bach (2017) 
• For , prefer functions for which  is small Savarese et al. (2019), Joshi, Vadi, & 

Srebro (2023), Boursier & Flammarion (2023) 
• For , prefer functions for which  is small Ongie et al. (2019) 

• Banach space representer theorems & minimax rates  Parhi & Nowak (2021), Bartolucci et al. 
(2023), Unser (2023) 

• Multi-layer linear networks 
• Gradient descent “aligns” layers  Ji & Telgarsky (2018) 

• Depth induces  and group norms depending on architecture Dai, Karzand, & Srebro 
(2021) 

• Depth promotes sparsity and low rank  Chou, Many, Rauhut (2011-2023) 

• Multi-layer nonlinear networks 
• Insights for rank-1 or orthonormal training data  Ergen & Pilanci (2021) 

• Insights for low-rank vector-valued networks  Jacot (2023, 2024) 

• This work
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Effect of weight decay regularization in neural networks
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Neural Networks

fθ(x) = a⊤σ (WL−1 ⋅ σ (⋯σ (W2σ (W1x))))
θ = (W1, W2, …, WL−1, a)

 where ̂θS ∈ arg min
θ

ℒS( fθ) + λCL(θ) CL(θ) =
1
L (

L−1

∑
ℓ=1

∥Wℓ∥2
F + ∥a∥2

2)
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Function Space Perspective
Parameter Space Cost

̂fS ∈ arg min
g∈𝒩L

ℒS(g) + λRL(g) where RL(g) = inf
θ

CL(θ) s.t. fθ = g

Representation Cost

What kinds of functions have small representation cost?  
How does the representation cost depend on network architecture, 

including depth?

 where ̂θS ∈ arg min
θ

ℒS( fθ) + λCL(θ) CL(θ) =
1
L (

L−1

∑
ℓ=1

∥Wℓ∥2
F + ∥a∥2

2) x[2]

x[1]



Linear layers in ReLU NNs 
promotes learning  

single-/multi—index models



Linear layers in ReLU networks
2-layer ReLU network: 

  

where  

h(2)
θ (x) =

K

∑
k=1

ak[w⊤
k x + bk]+ + c

= a⊤[Wx + b]+ + c

θ = (W, a, b, c)

Our focus: networks with   layers in which 
 layers have linear activations followed 

by a ReLU activation: 

  

where   

L
L − 1

h(L)
θ (x) = a⊤[WL−1⋯W2W1 x + b]+ + c

θ = (WL−1, …, W2, W1, a, b, c)
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θ (x)
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Why care about linear layers?

• Empirically, linear layers…  

• Help with generalization Golubeva et al. (2020) 

• Uncover low rank structure Kodak et al. (2020), Zeng and Graham (2023) 

• Improve training speed Ba and Caruana (2013); Urban et al. (2016); Arora et al. (2018)
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• The capacity or expressivity of the network is the 
same regardless of  — that is, different behaviors 
for different depths solely are independent of 
capacity. That is,  for some 

 for each .

L

h(L)
θ (x) = a⊤[Wx − b]+ + c

(W, a) L



First pass intuition
L = 2
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Single-Index Models

Zhu & Zhang (2006); Xia (2008); Yin, Li, & Cook (2008); Kakade, 
Kanade, Shamir, & Kalai (2011); Ganti, Balzano, & Willett (2015); 

Ganti, Rao, Balzano, Willett, & Nowak (2017), Bach (2017), Gollakta et 
al. (2024), Liu & Liao (2024)

Definition: A single-index model is a function 
 of the form  

,  
for some link function , where  

and  is called the central subspace.

f : ℝd ↦ ℝ
f(x) = g(v⊤x)

g : ℝ ↦ ℝ v ∈ ℝd

range(v)

single-index model in d = 2



Multi-Index Models

Definition: More generally, a multi-index model is 
a function  of the form  

,  
for some link function , where  

and  is called the central subspace. 

f : ℝd ↦ ℝ
f(x) = g(V⊤x)

g : ℝr ↦ ℝ V ∈ ℝd×r

range(V)

Zhu & Zhang (2006); Xia (2008); Yin, Li, & Cook (2008); Kakade, 
Kanade, Shamir, & Kalai (2011); Ganti, Balzano, & Willett (2015); 

Ganti, Rao, Balzano, Willett, & Nowak (2017), Bach (2017), Gollakta et 
al. (2024), Liu & Liao (2024)



None of these functions are single-index models

Functions may be “close” to a single-index model when they vary 
significantly more in one direction than another

“Close” to a 
single-index 

model

“Far” from a 
single-index 

model



Expected Gradient Outer Product (EGOP) Matrix

Index rank = 1

Samarov (1993); Hristache et al. (2001); Wu et al. (2010); Trivedi et al. (2014); Constantine, Dow, & Wang (2014); 
Constantine (2015); Radhakrishnan, Beaglehole, Pandit, & Belkin (2024); Radhakrishnan, Belkin, & Drusvyatskiy 

(2024); Radhakrishnan, Belkin, & Drusvyatskiy (2024);

Definition: Consider the expected gradient outer product matrix 
of a function : 

. 
The principal subspace of  is . The index rank of  is 

.

f : 𝒳 ↦ ℝ
Cf := 𝔼X[∇f(X)∇f(X)⊤]

f range(Cf) f
rankI( f ) := rank(Cf)

v⊤Cfv = EX [(v⊤ ∇f(X))2]



Mixed variation functions and effective index rank

Definition: Given a function  and , the mixed variation 
of  of order  is  

.

f : 𝒳 ↦ ℝ q ∈ (0,1]
f q

ℳ𝒱( f; q) := ∥C1/2
f ∥𝒮q

Donoho (2000); Parhi & Nowak (2022)

Definition: Given a function  and , define the effective index rank 
 

to be the number of singular values of  that are bigger than .

f ε > 0
rankI,ε( f )

C1/2
f ε



None of these functions are single-index models

Functions with small mixed-variation are “close” to having small index 
rank and can vary significantly more in one direction than another

Large ℳ𝒱( f ) Small ℳ𝒱( f )



Two-Layer Network Three-Layer Network

h(2)
θ (x) = a⊤[Wx + b]+ + c

h(2)
θ (x)

aW
h(3)

θ (x)
W2 aW1

h(3)
θ (x) = a⊤[Wx + b]+ + c

where W = W2W1

R2( f ) = min
θ

1
2

∥a∥2
2 +

1
2

∥W∥2
F  s.t.  f = h(2)

θ R3( f ) = min
θ

1
3

∥a∥2
2 +

2
3

∥W∥*  s.t.  f = h(2)
θ

C2(θ) =
1
2

∥a∥2
2 +

1
2

∥W∥2
F C3(θ) =

1
3

∥a∥2
2 +

1
3

∥W1∥2
F +

1
3

∥W2∥2
F

 Srebro, Rennie, & Jaakkola, 2004

min
W1W2=W

1
2

∥W1∥2
F +

1
2

∥W2∥2
F = ∥W∥*

R3( f ) = min
θ

1
3

∥a∥2
2 +

1
3

∥W1∥2
F +

1
3

∥W2∥2
F  s.t.  f = h(3)

θ



 
where 

RL( f ) = min
θ

1
L

∥a∥2
2 +

L − 1
L

∥W∥q
𝒮q s . t . f = h(2)

θ

q =
2

L − 1



Function with 
unaligned ReLU 

units: zig-zig 
contour lines

Function with 
aligned ReLU 
units: parallel 
contour lines

 
where 

RL( f ) = min
θ

1
L

∥a∥2
2 +

L − 1
L

∥W∥q
𝒮q s . t . f = h(2)

θ

q =
2

L − 1



Minimizing the -cost promotes learning 
functions that have small mixed variation, 
such as single- and multi- index models

RL



Theorem: 
 max (ℳ𝒱( f; 2

L − 1 )2/L, R2( f )2/L) ≤ RL( f ) ≤ rankI( f )L − 2
L R2( f )2/L

Mixed Variation, Index Rank, and the Representation Cost

Minimizing the -cost favors functions that vary primarily along a low-
dimensional subspace, and are smooth along that subspace.

RL



Corollary: If  are such that , then for  
sufficiently large, 

.

fℓ, fh rankI( fℓ) < rankI( fh) L

RL( fℓ) < RL( fh)

Corollary: 
 lim

L→∞
RL( f ) = rank( f )

Mixed Variation, Index Rank, and the Representation Cost

Theorem: 
 max (ℳ𝒱( f; 2

L − 1 )2/L, R2( f )2/L) ≤ RL( f ) ≤ rankI( f )L − 2
L R2( f )2/L



Minimal-norm interpolants are nearly low index rank

Theorem: Any interpolant  of a dataset  that has minimal  cost has effective index 
rank bounded as 

 

where  denotes the  cost needed to interpolate  with a function of index rank 
.

̂fL 𝒟 RL

rankI,ε( ̂fL) ≤ min
s∈[d]

s ( ℐs(𝒟)

ε s )
2

L − 1

ℐs(𝒟) R2 𝒟
≤ s

Corollary: Suppose that a dataset  is generated by a function  with 

and bounded  cost. Then If . Then .

𝒟 f* rankI( f*) = r

R2 R2( f*) < ε r (1 +
1

r )
L − 1

2

rankI,ε( ̂fL) ≤ r



Numerical Example

Adding linear layers causes trained networks to have low effective index rank. 



Minimizing the -cost promotes learning 
functions that have small mixed variation, 
such as single- and multi- index models

RL



Thank you!

Rebecca WillettGreg Ongie
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