Depth Separation in Learning
via Representation Costs

Suzanna Parkinson, Ph.D. Candidate
University of Chicago
Committee on Computational and Applied Mathematics

https.//arxiv.org/abs/2402 08808



Depth Separation: Gaps in behavior between neural networks at ditferent depths

« Approximation Width: df you can approximate with many fewer units using deeper networks
Pinkus 1999, Telgarsky (2016), Eldan & Shamir (2016), Daniely (201/), Satran et al. (Z021)

* Representation Cost: df you can represent with much smaller parameters using deeper networks
Ongie etal. (2019)

How does this translate to gaps

in generalization & learning?




What do we mean by learning?

e True underlying distribution X ~ 9, y = f(x)
* Receive m training examples/samples § = {(X;, ) }'_,

* Use a learning rule &/(S) to choose a model from a model class based on training samples

m

Ex: Try to minimize sample loss: </(S) € argmin £ (g) := — Z ( g(x;) — yl-)
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* Want small generalization error/expected loss

LoAAS) = Eygy | (S = f0)°] = 198) = Ml o

* Only get finitely many training samples
 Using a

—>Best we can hope for is to be Probably Approximately Correct (PAC).



Probably Approximately Correct (PAC) Learning

Definition: The output of a learning rule & trained with m samples is
(e,0)-Probably Approximately Correct if with probability 1 — 6 over the training
samples § = {(X;,y;)}._,, the generalization error is less than &:

LAAS)) < €.

't our learning rule & gives a model that is (&, 0)-Probably
Approximately Correct using m(e, ) samples, then we say
that we can learn with sample complexity m(e, 0).



Generalization vs. vs. Estimation Error

ZLo(A(S)) < inf Lg(g) +2sup | L (g) — Lgy(g)]

geEYG 90€ELG
Generalization
Error Estimation
(expected loss) Error
. Need existence of good approximator g in model class. Homik (1991),

Shen et al. (2022)

» Estimation Error: Control via the size of model class, as measured by VC-dimension,

Rademacher complexity, metric entro Y, €lC. Vapnik & Chervonenkis (1971), Bartlett & Mendelson (2001), Neyshabur
etal. (2015).



Neural Networks
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Function Space Perspective

Parameter Space Cost

A | 1 L—1
05 € argmin L(f;) + AC,(0) where C,(0) = ( W12+ HaH%)
=1

!
fs € arg min Z(g) + AR,(g) where R,(g) = inf C,(0) s.t. = g
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Representation Cost

Can understanding representation costs across different depths

help us understand gaps in learning/generalization capabilities?




Are deeper neural networks

better at learning?




Are depth-2 or depth-3 neural

networks better at learning?




First Pass Intuition

Depth-2 ReLU Network Depth-3 ReLU Network
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continuous functions with arbitrary continuous functions with arbitrary
width. Homik (1991 width. Homik (1991)

 Fewer parameters = smaller model * More parameters = bigger model
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Depth-2 ReLU Network
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Depth Separation in Width to Approximate

RelLU

T

e

2\

>

 Requires > 29 width to
to within a fixed € with depth 2

Output
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Depth-3 ReLU Network

Rel U RelLU

. with poly(d, e ) width
with depth 3

Pinkus 1999, Telgarsky (2016), Eldan & Shamir (2016), Daniely (201/), Safran et al. (20217)
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What it we measure model size in
terms of norm of parameters
instead of number of parameters?

Bartlett 1996, Neyshabur, Tomioka & Srebro 2015

For valid generalization, the size of the
weights is more important than the size
of the network

Peter L. Bartlett
Department of Systems Engineering
Research School of Information Sciences and Engineering
Australian National University
Canberra, 0200 Australia
Peter.Bartlett@anu.edu.au




Depth Separation in Representation Cost

Depth-2 ReLU Network
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Depth-3 ReLU Network
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for which R,(f) > R;(f)

Ongie etal 2019



Depth Separation in Learning?

Depth-2 ReLU Network Depth-3 ReLU Network
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x[2] @
3f, : RY > R and and distributions x ~ @, on R? that...

Input

» Require 2”¥ samples to learn to within  Only need poly(d, ¢!, 57!) samples to
a tfixed € and 6 with depth 2 learn with depth 3
o4(S) = arg min Z(g) + AR,(g) 24(S) = arg min Z(g) + AR;(g)
geN, geN,

Pinkus 1999, Telgarsky (2016), Eldan & Shamir (2016), Daniely (201/), Safran et al. (20217)



Reverse Depth Separation in Learning?

Depth-2 ReLU Network Depth-3 ReLU Network
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+ Only need poly(d, 1,5 !) samples to o Require 29 samples to learn to within
learn with depth 2 a fixed € with depth 3
Qf’%(S) = arg min £ (g) + AR,(g) QQY’%(S) = arg min £ (g) + AR;(g)
geN, geN,

Pinkus 1999, Telgarsky (2016), Eldan & Shamir (2016), Daniely (201/), Safran et al. (20217)



Understanding representation costs can
help us answer these questions about the

role of depth

For valid generalization, the size of the
weights is more important than the size
of the network

Peter L. Bartlett
Department of Systems Engineering
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Canberra, 0200 Australia
Peter.Bartlett@anu.edu.au




Depth Separation: 3f,that is “hard” with depth 2 but "easy" with depth 3

Key: Choose f, so that...

Large representation cost with depth 2
RelLU

Input ‘
x[1] ./‘\ Output Small representation cost with depth 3
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Depth Separation: 3f,that is “hard” with depth 2 but "easy" with depth 3

Sawtooth Function v, (t), n =4

1.0 -

Proof Sketch: .
¢ X~ Unif(§*! x 8971, 00 =y, (Va(xD, x))

—0.5 -

Slight modification of Daniely (2017) construction for separation in
width to approximate

—1.0 A

* Daniely showed that depth 2 networks need to be very wide to
approximate functions that are compositions of a function that is
very non-polynomial with an inner-product

* Naturally approximated by a depth 3 network...

* The inner product can be approximated with first hidden layer 2

» Sawtooth function can be expressed exactly with second hidden
layer




Depth Separation: 3f,that is “hard” with depth 2 but "easy" with depth 3

Proof Sketch:“Hard” with ¢/4(S) € arg min £ (g) + AR,(g)

8EN; 0
 Lemma: fcan be e-approximated with depth 2 with R, < C " ./0\
C 2] @ ‘snfe(x)
— f can be g-approximated with depth 2 with width < > 03 0\2/

Expensive
» Converse: f, requires width > 249 to eg-approximate with depth 2

— f, requires R, > 2@ o g-approximate with depth 2
e With probability 1 — 9, a depth 2 interpolant of the samp\esfexists with Rz(f) < O(| S\z)
* Ry(e/4(9)) < Ry(f) = O(|S|*)

e So Qf’%(S) is a bad approximation of £, unless | S| > 249



Depth Separation: 3f,that is “hard” with depth 2 but "easy" with depth 3

Proof Sketch: “Easy” with szi’;(S) € arg min £ (g) + AR;(g)

8EN 3

f. of depth 3 with Z,(f,) < €/2 and Rx(f,) < poly(d)

 |f you choose 4 in a reasonable way, you get R3(£f§(S)) < Ry(f,) < poly(d)

Ly(d4(8) L Inf  ZLglg)+2 sup | ZL(g) —ZLy(9)]
- g _ R3 (&) SPOIY(CZ) R3 (2) Spo]y(d)
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(expected loss) Estimation Error

 Rademacher complexity analysis: If Ry(g) < poly(d), then with probability 1 — 9,

log 1/6
| Z5(8) — Z(8)| < pO‘y(d)\/

N
Neyshabur et al. 2015
e Therefore, SZ@(QQY’Q(S)) < & with high probability as long as

| S| = poly(d)e~*log(1/5)



No Reverse Depth Separation: /, “easy” with depth 2 — "easy” with depth 3

Key:

Small representation cost with depth 2

RelLU
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Output —> Small representation cost with depth 3
.fé’(x) ReLU RelU




No Reverse Depth Separation: /, “easy” with depth 2 — "easy” with depth 3

Proof Sketch: e §E§.fw
» If &/4(S) learns with polynomial sample complexity, 3f. of depth 2 such that xm.\:/
Lo(f) < el2 and Ry(f) < poly(d, e™Y). Cheap
J

* Ry(f.) =0 (d+Ry(f.)) < poly(d,e™")

 |f you choose 4 in a reasonable way, you get R3(Qf§(5)) < Ry(f.) < poly(d,e™1)

L o(A5(S)) < inf Lo(g) +2 sup | ZL(8) — L5(8) ]
—————  Rs@)<polyde™) Ry(g)<poly(d.e™)

| - > 4
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Generalization Error b ~
(expected loss) Estimation Error

e Therefore, using similar Rademacher complexity analysis, EQ(QY%(S)) < & with

high probability as long as| S| = poly(d, e ')log(1/6).



Functions that are “easy” to learn with depth 2 networks
form a strict subset of functions that are “easy” to learn
with depth 3 networks.

Easy with depth 2 Easy with depth 3




Thank you!
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